MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovollb2 Structured version   Visualization version   GIF version

Theorem ovollb2 24090
Description: It is often more convenient to do calculations with *closed* coverings rather than open ones; here we show that it makes no difference (compare ovollb 24080). (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypothesis
Ref Expression
ovollb2.1 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
Assertion
Ref Expression
ovollb2 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ))

Proof of Theorem ovollb2
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → 𝐴 ran ([,] ∘ 𝐹))
2 ovolficcss 24070 . . . . . . . 8 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
32adantr 483 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
41, 3sstrd 3977 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → 𝐴 ⊆ ℝ)
5 ovolcl 24079 . . . . . 6 (𝐴 ⊆ ℝ → (vol*‘𝐴) ∈ ℝ*)
64, 5syl 17 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → (vol*‘𝐴) ∈ ℝ*)
76adantr 483 . . . 4 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) = +∞) → (vol*‘𝐴) ∈ ℝ*)
8 pnfge 12526 . . . 4 ((vol*‘𝐴) ∈ ℝ* → (vol*‘𝐴) ≤ +∞)
97, 8syl 17 . . 3 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) = +∞) → (vol*‘𝐴) ≤ +∞)
10 simpr 487 . . 3 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) = +∞) → sup(ran 𝑆, ℝ*, < ) = +∞)
119, 10breqtrrd 5094 . 2 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) = +∞) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
12 eqid 2821 . . . . . . . . 9 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
13 ovollb2.1 . . . . . . . . 9 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
1412, 13ovolsf 24073 . . . . . . . 8 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
1514adantr 483 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → 𝑆:ℕ⟶(0[,)+∞))
1615frnd 6521 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → ran 𝑆 ⊆ (0[,)+∞))
17 rge0ssre 12845 . . . . . 6 (0[,)+∞) ⊆ ℝ
1816, 17sstrdi 3979 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → ran 𝑆 ⊆ ℝ)
19 1nn 11649 . . . . . . . 8 1 ∈ ℕ
2015fdmd 6523 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → dom 𝑆 = ℕ)
2119, 20eleqtrrid 2920 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → 1 ∈ dom 𝑆)
2221ne0d 4301 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → dom 𝑆 ≠ ∅)
23 dm0rn0 5795 . . . . . . 7 (dom 𝑆 = ∅ ↔ ran 𝑆 = ∅)
2423necon3bii 3068 . . . . . 6 (dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅)
2522, 24sylib 220 . . . . 5 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → ran 𝑆 ≠ ∅)
26 supxrre2 12725 . . . . 5 ((ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅) → (sup(ran 𝑆, ℝ*, < ) ∈ ℝ ↔ sup(ran 𝑆, ℝ*, < ) ≠ +∞))
2718, 25, 26syl2anc 586 . . . 4 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → (sup(ran 𝑆, ℝ*, < ) ∈ ℝ ↔ sup(ran 𝑆, ℝ*, < ) ≠ +∞))
2827biimpar 480 . . 3 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ≠ +∞) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
29 2fveq3 6675 . . . . . . . . 9 (𝑚 = 𝑛 → (1st ‘(𝐹𝑚)) = (1st ‘(𝐹𝑛)))
30 oveq2 7164 . . . . . . . . . 10 (𝑚 = 𝑛 → (2↑𝑚) = (2↑𝑛))
3130oveq2d 7172 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝑥 / 2) / (2↑𝑚)) = ((𝑥 / 2) / (2↑𝑛)))
3229, 31oveq12d 7174 . . . . . . . 8 (𝑚 = 𝑛 → ((1st ‘(𝐹𝑚)) − ((𝑥 / 2) / (2↑𝑚))) = ((1st ‘(𝐹𝑛)) − ((𝑥 / 2) / (2↑𝑛))))
33 2fveq3 6675 . . . . . . . . 9 (𝑚 = 𝑛 → (2nd ‘(𝐹𝑚)) = (2nd ‘(𝐹𝑛)))
3433, 31oveq12d 7174 . . . . . . . 8 (𝑚 = 𝑛 → ((2nd ‘(𝐹𝑚)) + ((𝑥 / 2) / (2↑𝑚))) = ((2nd ‘(𝐹𝑛)) + ((𝑥 / 2) / (2↑𝑛))))
3532, 34opeq12d 4811 . . . . . . 7 (𝑚 = 𝑛 → ⟨((1st ‘(𝐹𝑚)) − ((𝑥 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝑥 / 2) / (2↑𝑚)))⟩ = ⟨((1st ‘(𝐹𝑛)) − ((𝑥 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝑥 / 2) / (2↑𝑛)))⟩)
3635cbvmptv 5169 . . . . . 6 (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑚)) − ((𝑥 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝑥 / 2) / (2↑𝑚)))⟩) = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) − ((𝑥 / 2) / (2↑𝑛))), ((2nd ‘(𝐹𝑛)) + ((𝑥 / 2) / (2↑𝑛)))⟩)
37 eqid 2821 . . . . . 6 seq1( + , ((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑚)) − ((𝑥 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝑥 / 2) / (2↑𝑚)))⟩))) = seq1( + , ((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑚)) − ((𝑥 / 2) / (2↑𝑚))), ((2nd ‘(𝐹𝑚)) + ((𝑥 / 2) / (2↑𝑚)))⟩)))
38 simplll 773 . . . . . 6 ((((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
39 simpllr 774 . . . . . 6 ((((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝐴 ran ([,] ∘ 𝐹))
40 simpr 487 . . . . . 6 ((((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
41 simplr 767 . . . . . 6 ((((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
4213, 36, 37, 38, 39, 40, 41ovollb2lem 24089 . . . . 5 ((((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝑥))
4342ralrimiva 3182 . . . 4 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) → ∀𝑥 ∈ ℝ+ (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝑥))
44 xralrple 12599 . . . . 5 (((vol*‘𝐴) ∈ ℝ* ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) → ((vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ) ↔ ∀𝑥 ∈ ℝ+ (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝑥)))
456, 44sylan 582 . . . 4 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) → ((vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ) ↔ ∀𝑥 ∈ ℝ+ (vol*‘𝐴) ≤ (sup(ran 𝑆, ℝ*, < ) + 𝑥)))
4643, 45mpbird 259 . . 3 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
4728, 46syldan 593 . 2 (((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) ∧ sup(ran 𝑆, ℝ*, < ) ≠ +∞) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
4811, 47pm2.61dane 3104 1 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐴 ran ([,] ∘ 𝐹)) → (vol*‘𝐴) ≤ sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wral 3138  cin 3935  wss 3936  c0 4291  cop 4573   cuni 4838   class class class wbr 5066  cmpt 5146   × cxp 5553  dom cdm 5555  ran crn 5556  ccom 5559  wf 6351  cfv 6355  (class class class)co 7156  1st c1st 7687  2nd c2nd 7688  supcsup 8904  cr 10536  0cc0 10537  1c1 10538   + caddc 10540  +∞cpnf 10672  *cxr 10674   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  cn 11638  2c2 11693  +crp 12390  [,)cico 12741  [,]cicc 12742  seqcseq 13370  cexp 13430  abscabs 14593  vol*covol 24063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-ovol 24065
This theorem is referenced by:  ovolctb  24091  ovolicc1  24117  ioombl1lem4  24162  uniiccvol  24181
  Copyright terms: Public domain W3C validator