MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniiccvol Structured version   Visualization version   GIF version

Theorem uniiccvol 23437
Description: An almost-disjoint union of closed intervals (disjoint interiors) has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun 23411.) (Contributed by Mario Carneiro, 25-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
Assertion
Ref Expression
uniiccvol (𝜑 → (vol*‘ ran ([,] ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem uniiccvol
StepHypRef Expression
1 uniioombl.1 . . 3 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2 ssid 3698 . . 3 ran ([,] ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹)
3 uniioombl.3 . . . 4 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
43ovollb2 23346 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ([,] ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹)) → (vol*‘ ran ([,] ∘ 𝐹)) ≤ sup(ran 𝑆, ℝ*, < ))
51, 2, 4sylancl 697 . 2 (𝜑 → (vol*‘ ran ([,] ∘ 𝐹)) ≤ sup(ran 𝑆, ℝ*, < ))
6 uniioombl.2 . . . 4 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
71, 6, 3uniioovol 23436 . . 3 (𝜑 → (vol*‘ ran ((,) ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ))
8 ioossicc 12341 . . . . . . . . . . . 12 ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ⊆ ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥)))
9 df-ov 6736 . . . . . . . . . . . 12 ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) = ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
10 df-ov 6736 . . . . . . . . . . . 12 ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))) = ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
118, 9, 103sstr3i 3717 . . . . . . . . . . 11 ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩) ⊆ ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
1211a1i 11 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩) ⊆ ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
13 inss2 3910 . . . . . . . . . . . . 13 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
14 ffvelrn 6440 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ( ≤ ∩ (ℝ × ℝ)))
1513, 14sseldi 3675 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐹𝑥) ∈ (ℝ × ℝ))
16 1st2nd2 7292 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ (ℝ × ℝ) → (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
1715, 16syl 17 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
1817fveq2d 6276 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((,)‘(𝐹𝑥)) = ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
1917fveq2d 6276 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ([,]‘(𝐹𝑥)) = ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
2012, 18, 193sstr4d 3722 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((,)‘(𝐹𝑥)) ⊆ ([,]‘(𝐹𝑥)))
21 fvco3 6357 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((,)‘(𝐹𝑥)))
22 fvco3 6357 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑥) = ([,]‘(𝐹𝑥)))
2320, 21, 223sstr4d 3722 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) ⊆ (([,] ∘ 𝐹)‘𝑥))
241, 23sylan 489 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) ⊆ (([,] ∘ 𝐹)‘𝑥))
2524ralrimiva 3036 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ⊆ (([,] ∘ 𝐹)‘𝑥))
26 ss2iun 4612 . . . . . 6 (∀𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ⊆ (([,] ∘ 𝐹)‘𝑥) → 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ⊆ 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥))
2725, 26syl 17 . . . . 5 (𝜑 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ⊆ 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥))
28 ioof 12353 . . . . . . . 8 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
29 ffn 6126 . . . . . . . 8 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
3028, 29ax-mp 5 . . . . . . 7 (,) Fn (ℝ* × ℝ*)
31 rexpssxrxp 10165 . . . . . . . . 9 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
3213, 31sstri 3686 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
33 fss 6137 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
341, 32, 33sylancl 697 . . . . . . 7 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
35 fnfco 6150 . . . . . . 7 (((,) Fn (ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹) Fn ℕ)
3630, 34, 35sylancr 698 . . . . . 6 (𝜑 → ((,) ∘ 𝐹) Fn ℕ)
37 fniunfv 6588 . . . . . 6 (((,) ∘ 𝐹) Fn ℕ → 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ran ((,) ∘ 𝐹))
3836, 37syl 17 . . . . 5 (𝜑 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ran ((,) ∘ 𝐹))
39 iccf 12354 . . . . . . . 8 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
40 ffn 6126 . . . . . . . 8 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → [,] Fn (ℝ* × ℝ*))
4139, 40ax-mp 5 . . . . . . 7 [,] Fn (ℝ* × ℝ*)
42 fnfco 6150 . . . . . . 7 (([,] Fn (ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ([,] ∘ 𝐹) Fn ℕ)
4341, 34, 42sylancr 698 . . . . . 6 (𝜑 → ([,] ∘ 𝐹) Fn ℕ)
44 fniunfv 6588 . . . . . 6 (([,] ∘ 𝐹) Fn ℕ → 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥) = ran ([,] ∘ 𝐹))
4543, 44syl 17 . . . . 5 (𝜑 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥) = ran ([,] ∘ 𝐹))
4627, 38, 453sstr3d 3721 . . . 4 (𝜑 ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹))
47 ovolficcss 23327 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
481, 47syl 17 . . . 4 (𝜑 ran ([,] ∘ 𝐹) ⊆ ℝ)
49 ovolss 23342 . . . 4 (( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ∧ ran ([,] ∘ 𝐹) ⊆ ℝ) → (vol*‘ ran ((,) ∘ 𝐹)) ≤ (vol*‘ ran ([,] ∘ 𝐹)))
5046, 48, 49syl2anc 696 . . 3 (𝜑 → (vol*‘ ran ((,) ∘ 𝐹)) ≤ (vol*‘ ran ([,] ∘ 𝐹)))
517, 50eqbrtrrd 4752 . 2 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran ([,] ∘ 𝐹)))
52 ovolcl 23335 . . . 4 ( ran ([,] ∘ 𝐹) ⊆ ℝ → (vol*‘ ran ([,] ∘ 𝐹)) ∈ ℝ*)
5348, 52syl 17 . . 3 (𝜑 → (vol*‘ ran ([,] ∘ 𝐹)) ∈ ℝ*)
54 eqid 2692 . . . . . . . 8 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
5554, 3ovolsf 23330 . . . . . . 7 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
561, 55syl 17 . . . . . 6 (𝜑𝑆:ℕ⟶(0[,)+∞))
57 frn 6134 . . . . . 6 (𝑆:ℕ⟶(0[,)+∞) → ran 𝑆 ⊆ (0[,)+∞))
5856, 57syl 17 . . . . 5 (𝜑 → ran 𝑆 ⊆ (0[,)+∞))
59 icossxr 12340 . . . . 5 (0[,)+∞) ⊆ ℝ*
6058, 59syl6ss 3689 . . . 4 (𝜑 → ran 𝑆 ⊆ ℝ*)
61 supxrcl 12227 . . . 4 (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
6260, 61syl 17 . . 3 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
63 xrletri3 12067 . . 3 (((vol*‘ ran ([,] ∘ 𝐹)) ∈ ℝ* ∧ sup(ran 𝑆, ℝ*, < ) ∈ ℝ*) → ((vol*‘ ran ([,] ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ) ↔ ((vol*‘ ran ([,] ∘ 𝐹)) ≤ sup(ran 𝑆, ℝ*, < ) ∧ sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran ([,] ∘ 𝐹)))))
6453, 62, 63syl2anc 696 . 2 (𝜑 → ((vol*‘ ran ([,] ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ) ↔ ((vol*‘ ran ([,] ∘ 𝐹)) ≤ sup(ran 𝑆, ℝ*, < ) ∧ sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran ([,] ∘ 𝐹)))))
655, 51, 64mpbir2and 995 1 (𝜑 → (vol*‘ ran ([,] ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1564  wcel 2071  wral 2982  cin 3647  wss 3648  𝒫 cpw 4234  cop 4259   cuni 4512   ciun 4596  Disj wdisj 4696   class class class wbr 4728   × cxp 5184  ran crn 5187  ccom 5190   Fn wfn 5964  wf 5965  cfv 5969  (class class class)co 6733  1st c1st 7251  2nd c2nd 7252  supcsup 8430  cr 10016  0cc0 10017  1c1 10018   + caddc 10020  +∞cpnf 10152  *cxr 10154   < clt 10155  cle 10156  cmin 10347  cn 11101  (,)cioo 12257  [,)cico 12259  [,]cicc 12260  seqcseq 12884  abscabs 14062  vol*covol 23320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1818  ax-5 1920  ax-6 1986  ax-7 2022  ax-8 2073  ax-9 2080  ax-10 2100  ax-11 2115  ax-12 2128  ax-13 2323  ax-ext 2672  ax-rep 4847  ax-sep 4857  ax-nul 4865  ax-pow 4916  ax-pr 4979  ax-un 7034  ax-inf2 8619  ax-cnex 10073  ax-resscn 10074  ax-1cn 10075  ax-icn 10076  ax-addcl 10077  ax-addrcl 10078  ax-mulcl 10079  ax-mulrcl 10080  ax-mulcom 10081  ax-addass 10082  ax-mulass 10083  ax-distr 10084  ax-i2m1 10085  ax-1ne0 10086  ax-1rid 10087  ax-rnegex 10088  ax-rrecex 10089  ax-cnre 10090  ax-pre-lttri 10091  ax-pre-lttrn 10092  ax-pre-ltadd 10093  ax-pre-mulgt0 10094  ax-pre-sup 10095
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1567  df-fal 1570  df-ex 1786  df-nf 1791  df-sb 1979  df-eu 2543  df-mo 2544  df-clab 2679  df-cleq 2685  df-clel 2688  df-nfc 2823  df-ne 2865  df-nel 2968  df-ral 2987  df-rex 2988  df-reu 2989  df-rmo 2990  df-rab 2991  df-v 3274  df-sbc 3510  df-csb 3608  df-dif 3651  df-un 3653  df-in 3655  df-ss 3662  df-pss 3664  df-nul 3992  df-if 4163  df-pw 4236  df-sn 4254  df-pr 4256  df-tp 4258  df-op 4260  df-uni 4513  df-int 4552  df-iun 4598  df-disj 4697  df-br 4729  df-opab 4789  df-mpt 4806  df-tr 4829  df-id 5096  df-eprel 5101  df-po 5107  df-so 5108  df-fr 5145  df-se 5146  df-we 5147  df-xp 5192  df-rel 5193  df-cnv 5194  df-co 5195  df-dm 5196  df-rn 5197  df-res 5198  df-ima 5199  df-pred 5761  df-ord 5807  df-on 5808  df-lim 5809  df-suc 5810  df-iota 5932  df-fun 5971  df-fn 5972  df-f 5973  df-f1 5974  df-fo 5975  df-f1o 5976  df-fv 5977  df-isom 5978  df-riota 6694  df-ov 6736  df-oprab 6737  df-mpt2 6738  df-of 6982  df-om 7151  df-1st 7253  df-2nd 7254  df-wrecs 7495  df-recs 7556  df-rdg 7594  df-1o 7648  df-2o 7649  df-oadd 7652  df-er 7830  df-map 7944  df-pm 7945  df-en 8041  df-dom 8042  df-sdom 8043  df-fin 8044  df-fi 8401  df-sup 8432  df-inf 8433  df-oi 8499  df-card 8846  df-cda 9071  df-pnf 10157  df-mnf 10158  df-xr 10159  df-ltxr 10160  df-le 10161  df-sub 10349  df-neg 10350  df-div 10766  df-nn 11102  df-2 11160  df-3 11161  df-n0 11374  df-z 11459  df-uz 11769  df-q 11871  df-rp 11915  df-xneg 12028  df-xadd 12029  df-xmul 12030  df-ioo 12261  df-ico 12263  df-icc 12264  df-fz 12409  df-fzo 12549  df-fl 12676  df-seq 12885  df-exp 12944  df-hash 13201  df-cj 13927  df-re 13928  df-im 13929  df-sqrt 14063  df-abs 14064  df-clim 14307  df-rlim 14308  df-sum 14505  df-rest 16174  df-topgen 16195  df-psmet 19829  df-xmet 19830  df-met 19831  df-bl 19832  df-mopn 19833  df-top 20790  df-topon 20807  df-bases 20841  df-cmp 21281  df-ovol 23322  df-vol 23323
This theorem is referenced by:  mblfinlem2  33647
  Copyright terms: Public domain W3C validator