MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lagsubg Structured version   Visualization version   GIF version

Theorem lagsubg 18325
Description: Lagrange's theorem for Groups: the order of any subgroup of a finite group is a divisor of the order of the group. This is Metamath 100 proof #71. (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
lagsubg.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
lagsubg ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∥ (♯‘𝑋))

Proof of Theorem lagsubg
StepHypRef Expression
1 simpr 487 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝑋 ∈ Fin)
2 pwfi 8805 . . . . . . 7 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
31, 2sylib 220 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝒫 𝑋 ∈ Fin)
4 lagsubg.1 . . . . . . . . 9 𝑋 = (Base‘𝐺)
5 eqid 2821 . . . . . . . . 9 (𝐺 ~QG 𝑌) = (𝐺 ~QG 𝑌)
64, 5eqger 18313 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑌) Er 𝑋)
76adantr 483 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (𝐺 ~QG 𝑌) Er 𝑋)
87qsss 8344 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (𝑋 / (𝐺 ~QG 𝑌)) ⊆ 𝒫 𝑋)
93, 8ssfid 8727 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (𝑋 / (𝐺 ~QG 𝑌)) ∈ Fin)
10 hashcl 13707 . . . . 5 ((𝑋 / (𝐺 ~QG 𝑌)) ∈ Fin → (♯‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℕ0)
119, 10syl 17 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℕ0)
1211nn0zd 12072 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℤ)
13 id 22 . . . . . 6 (𝑋 ∈ Fin → 𝑋 ∈ Fin)
144subgss 18263 . . . . . 6 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
15 ssfi 8724 . . . . . 6 ((𝑋 ∈ Fin ∧ 𝑌𝑋) → 𝑌 ∈ Fin)
1613, 14, 15syl2anr 598 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝑌 ∈ Fin)
17 hashcl 13707 . . . . 5 (𝑌 ∈ Fin → (♯‘𝑌) ∈ ℕ0)
1816, 17syl 17 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∈ ℕ0)
1918nn0zd 12072 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∈ ℤ)
20 dvdsmul2 15617 . . 3 (((♯‘(𝑋 / (𝐺 ~QG 𝑌))) ∈ ℤ ∧ (♯‘𝑌) ∈ ℤ) → (♯‘𝑌) ∥ ((♯‘(𝑋 / (𝐺 ~QG 𝑌))) · (♯‘𝑌)))
2112, 19, 20syl2anc 586 . 2 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∥ ((♯‘(𝑋 / (𝐺 ~QG 𝑌))) · (♯‘𝑌)))
22 simpl 485 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → 𝑌 ∈ (SubGrp‘𝐺))
234, 5, 22, 1lagsubg2 18324 . 2 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘(𝑋 / (𝐺 ~QG 𝑌))) · (♯‘𝑌)))
2421, 23breqtrrd 5080 1 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑌) ∥ (♯‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wss 3924  𝒫 cpw 4525   class class class wbr 5052  cfv 6341  (class class class)co 7142   Er wer 8272   / cqs 8274  Fincfn 8495   · cmul 10528  0cn0 11884  cz 11968  chash 13680  cdvds 15592  Basecbs 16466  SubGrpcsubg 18256   ~QG cqg 18258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-inf2 9090  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600  ax-pre-sup 10601
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-disj 5018  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-se 5501  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-2o 8089  df-oadd 8092  df-er 8275  df-ec 8277  df-qs 8281  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-sup 8892  df-oi 8960  df-card 9354  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-div 11284  df-nn 11625  df-2 11687  df-3 11688  df-n0 11885  df-z 11969  df-uz 12231  df-rp 12377  df-fz 12883  df-fzo 13024  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14443  df-re 14444  df-im 14445  df-sqrt 14579  df-abs 14580  df-clim 14830  df-sum 15028  df-dvds 15593  df-ndx 16469  df-slot 16470  df-base 16472  df-sets 16473  df-ress 16474  df-plusg 16561  df-0g 16698  df-mgm 17835  df-sgrp 17884  df-mnd 17895  df-grp 18089  df-minusg 18090  df-subg 18259  df-eqg 18261
This theorem is referenced by:  oddvds2  18676  fislw  18733  sylow3lem4  18738  ablfacrp2  19172  ablfac1c  19176  ablfac1eu  19178  prmgrpsimpgd  19219
  Copyright terms: Public domain W3C validator