MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmonn2 Structured version   Visualization version   GIF version

Theorem prmonn2 15523
Description: Value of the primorial function expressed recursively. (Contributed by AV, 28-Aug-2020.)
Assertion
Ref Expression
prmonn2 (𝑁 ∈ ℕ → (#p𝑁) = if(𝑁 ∈ ℙ, ((#p‘(𝑁 − 1)) · 𝑁), (#p‘(𝑁 − 1))))

Proof of Theorem prmonn2
StepHypRef Expression
1 nncn 10871 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2 npcan1 10302 . . . . 5 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
31, 2syl 17 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
43eqcomd 2611 . . 3 (𝑁 ∈ ℕ → 𝑁 = ((𝑁 − 1) + 1))
54fveq2d 6088 . 2 (𝑁 ∈ ℕ → (#p𝑁) = (#p‘((𝑁 − 1) + 1)))
6 nnm1nn0 11177 . . 3 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
7 prmop1 15522 . . 3 ((𝑁 − 1) ∈ ℕ0 → (#p‘((𝑁 − 1) + 1)) = if(((𝑁 − 1) + 1) ∈ ℙ, ((#p‘(𝑁 − 1)) · ((𝑁 − 1) + 1)), (#p‘(𝑁 − 1))))
86, 7syl 17 . 2 (𝑁 ∈ ℕ → (#p‘((𝑁 − 1) + 1)) = if(((𝑁 − 1) + 1) ∈ ℙ, ((#p‘(𝑁 − 1)) · ((𝑁 − 1) + 1)), (#p‘(𝑁 − 1))))
93eleq1d 2667 . . 3 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1) ∈ ℙ ↔ 𝑁 ∈ ℙ))
103oveq2d 6539 . . 3 (𝑁 ∈ ℕ → ((#p‘(𝑁 − 1)) · ((𝑁 − 1) + 1)) = ((#p‘(𝑁 − 1)) · 𝑁))
119, 10ifbieq1d 4054 . 2 (𝑁 ∈ ℕ → if(((𝑁 − 1) + 1) ∈ ℙ, ((#p‘(𝑁 − 1)) · ((𝑁 − 1) + 1)), (#p‘(𝑁 − 1))) = if(𝑁 ∈ ℙ, ((#p‘(𝑁 − 1)) · 𝑁), (#p‘(𝑁 − 1))))
125, 8, 113eqtrd 2643 1 (𝑁 ∈ ℕ → (#p𝑁) = if(𝑁 ∈ ℙ, ((#p‘(𝑁 − 1)) · 𝑁), (#p‘(𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wcel 1975  ifcif 4031  cfv 5786  (class class class)co 6523  cc 9786  1c1 9789   + caddc 9791   · cmul 9793  cmin 10113  cn 10863  0cn0 11135  cprime 15165  #pcprmo 15515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-oadd 7424  df-er 7602  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-sup 8204  df-oi 8271  df-card 8621  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-n0 11136  df-z 11207  df-uz 11516  df-rp 11661  df-fz 12149  df-fzo 12286  df-seq 12615  df-exp 12674  df-hash 12931  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-clim 14009  df-prod 14417  df-prmo 15516
This theorem is referenced by:  prmo2  15524  prmo3  15525  prmo4  15615  prmo5  15616  prmo6  15617  ex-prmo  26470
  Copyright terms: Public domain W3C validator