Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhf Structured version   Visualization version   GIF version

Theorem qqhf 31227
Description: ℚHom as a function. (Contributed by Thierry Arnoux, 28-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0 𝐵 = (Base‘𝑅)
qqhval2.1 / = (/r𝑅)
qqhval2.2 𝐿 = (ℤRHom‘𝑅)
Assertion
Ref Expression
qqhf ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶𝐵)

Proof of Theorem qqhf
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 qqhval2.0 . . 3 𝐵 = (Base‘𝑅)
2 qqhval2.1 . . 3 / = (/r𝑅)
3 qqhval2.2 . . 3 𝐿 = (ℤRHom‘𝑅)
41, 2, 3qqhval2 31223 . 2 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) = (𝑞 ∈ ℚ ↦ ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞)))))
5 drngring 19509 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
65adantr 483 . . . 4 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → 𝑅 ∈ Ring)
76adantr 483 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ Ring)
83zrhrhm 20659 . . . . 5 (𝑅 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑅))
9 zringbas 20623 . . . . . 6 ℤ = (Base‘ℤring)
109, 1rhmf 19478 . . . . 5 (𝐿 ∈ (ℤring RingHom 𝑅) → 𝐿:ℤ⟶𝐵)
117, 8, 103syl 18 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → 𝐿:ℤ⟶𝐵)
12 qnumcl 16080 . . . . 5 (𝑞 ∈ ℚ → (numer‘𝑞) ∈ ℤ)
1312adantl 484 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (numer‘𝑞) ∈ ℤ)
1411, 13ffvelrnd 6852 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (𝐿‘(numer‘𝑞)) ∈ 𝐵)
15 simpll 765 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ DivRing)
16 qdencl 16081 . . . . . . 7 (𝑞 ∈ ℚ → (denom‘𝑞) ∈ ℕ)
1716adantl 484 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (denom‘𝑞) ∈ ℕ)
1817nnzd 12087 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (denom‘𝑞) ∈ ℤ)
1911, 18ffvelrnd 6852 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (𝐿‘(denom‘𝑞)) ∈ 𝐵)
2017nnne0d 11688 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (denom‘𝑞) ≠ 0)
2120neneqd 3021 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → ¬ (denom‘𝑞) = 0)
22 fvex 6683 . . . . . . . . . 10 (denom‘𝑞) ∈ V
2322elsn 4582 . . . . . . . . 9 ((denom‘𝑞) ∈ {0} ↔ (denom‘𝑞) = 0)
2421, 23sylnibr 331 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → ¬ (denom‘𝑞) ∈ {0})
25 eqid 2821 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
261, 3, 25zrhker 31218 . . . . . . . . . . 11 (𝑅 ∈ Ring → ((chr‘𝑅) = 0 ↔ (𝐿 “ {(0g𝑅)}) = {0}))
2726biimpa 479 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (chr‘𝑅) = 0) → (𝐿 “ {(0g𝑅)}) = {0})
285, 27sylan 582 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (𝐿 “ {(0g𝑅)}) = {0})
2928adantr 483 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (𝐿 “ {(0g𝑅)}) = {0})
3024, 29neleqtrrd 2935 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → ¬ (denom‘𝑞) ∈ (𝐿 “ {(0g𝑅)}))
31 ffn 6514 . . . . . . . . . . . 12 (𝐿:ℤ⟶𝐵𝐿 Fn ℤ)
328, 10, 313syl 18 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝐿 Fn ℤ)
33 elpreima 6828 . . . . . . . . . . 11 (𝐿 Fn ℤ → ((denom‘𝑞) ∈ (𝐿 “ {(0g𝑅)}) ↔ ((denom‘𝑞) ∈ ℤ ∧ (𝐿‘(denom‘𝑞)) ∈ {(0g𝑅)})))
345, 32, 333syl 18 . . . . . . . . . 10 (𝑅 ∈ DivRing → ((denom‘𝑞) ∈ (𝐿 “ {(0g𝑅)}) ↔ ((denom‘𝑞) ∈ ℤ ∧ (𝐿‘(denom‘𝑞)) ∈ {(0g𝑅)})))
3534biimpar 480 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ ((denom‘𝑞) ∈ ℤ ∧ (𝐿‘(denom‘𝑞)) ∈ {(0g𝑅)})) → (denom‘𝑞) ∈ (𝐿 “ {(0g𝑅)}))
3635expr 459 . . . . . . . 8 ((𝑅 ∈ DivRing ∧ (denom‘𝑞) ∈ ℤ) → ((𝐿‘(denom‘𝑞)) ∈ {(0g𝑅)} → (denom‘𝑞) ∈ (𝐿 “ {(0g𝑅)})))
3736con3dimp 411 . . . . . . 7 (((𝑅 ∈ DivRing ∧ (denom‘𝑞) ∈ ℤ) ∧ ¬ (denom‘𝑞) ∈ (𝐿 “ {(0g𝑅)})) → ¬ (𝐿‘(denom‘𝑞)) ∈ {(0g𝑅)})
3815, 18, 30, 37syl21anc 835 . . . . . 6 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → ¬ (𝐿‘(denom‘𝑞)) ∈ {(0g𝑅)})
39 fvex 6683 . . . . . . 7 (𝐿‘(denom‘𝑞)) ∈ V
4039elsn 4582 . . . . . 6 ((𝐿‘(denom‘𝑞)) ∈ {(0g𝑅)} ↔ (𝐿‘(denom‘𝑞)) = (0g𝑅))
4138, 40sylnib 330 . . . . 5 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → ¬ (𝐿‘(denom‘𝑞)) = (0g𝑅))
4241neqned 3023 . . . 4 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (𝐿‘(denom‘𝑞)) ≠ (0g𝑅))
43 eqid 2821 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
441, 43, 25drngunit 19507 . . . . 5 (𝑅 ∈ DivRing → ((𝐿‘(denom‘𝑞)) ∈ (Unit‘𝑅) ↔ ((𝐿‘(denom‘𝑞)) ∈ 𝐵 ∧ (𝐿‘(denom‘𝑞)) ≠ (0g𝑅))))
4544biimpar 480 . . . 4 ((𝑅 ∈ DivRing ∧ ((𝐿‘(denom‘𝑞)) ∈ 𝐵 ∧ (𝐿‘(denom‘𝑞)) ≠ (0g𝑅))) → (𝐿‘(denom‘𝑞)) ∈ (Unit‘𝑅))
4615, 19, 42, 45syl12anc 834 . . 3 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → (𝐿‘(denom‘𝑞)) ∈ (Unit‘𝑅))
471, 43, 2dvrcl 19436 . . 3 ((𝑅 ∈ Ring ∧ (𝐿‘(numer‘𝑞)) ∈ 𝐵 ∧ (𝐿‘(denom‘𝑞)) ∈ (Unit‘𝑅)) → ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))) ∈ 𝐵)
487, 14, 46, 47syl3anc 1367 . 2 (((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) ∧ 𝑞 ∈ ℚ) → ((𝐿‘(numer‘𝑞)) / (𝐿‘(denom‘𝑞))) ∈ 𝐵)
494, 48fmpt3d 6880 1 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  {csn 4567  ccnv 5554  cima 5558   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  0cc0 10537  cn 11638  cz 11982  cq 12349  numercnumer 16073  denomcdenom 16074  Basecbs 16483  0gc0g 16713  Ringcrg 19297  Unitcui 19389  /rcdvr 19432   RingHom crh 19464  DivRingcdr 19502  ringzring 20617  ℤRHomczrh 20647  chrcchr 20649  ℚHomcqqh 31213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-fz 12894  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-gcd 15844  df-numer 16075  df-denom 16076  df-gz 16266  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-od 18656  df-cmn 18908  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-rnghom 19467  df-drng 19504  df-subrg 19533  df-cnfld 20546  df-zring 20618  df-zrh 20651  df-chr 20653  df-qqh 31214
This theorem is referenced by:  qqhghm  31229  qqhrhm  31230  qqhcn  31232  qqhucn  31233  qqhre  31261
  Copyright terms: Public domain W3C validator