MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  retopn Structured version   Visualization version   GIF version

Theorem retopn 22845
Description: The topology of the real numbers. (Contributed by Thierry Arnoux, 30-Jun-2019.)
Assertion
Ref Expression
retopn (topGen‘ran (,)) = (TopOpen‘ℝfld)

Proof of Theorem retopn
StepHypRef Expression
1 eqid 2514 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21tgioo2 22327 . 2 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
3 df-refld 19680 . . 3 fld = (ℂflds ℝ)
43, 1resstopn 20707 . 2 ((TopOpen‘ℂfld) ↾t ℝ) = (TopOpen‘ℝfld)
52, 4eqtri 2536 1 (topGen‘ran (,)) = (TopOpen‘ℝfld)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  ran crn 4933  cfv 5689  (class class class)co 6425  cr 9688  (,)cioo 11911  t crest 15792  TopOpenctopn 15793  topGenctg 15809  fldccnfld 19475  fldcrefld 19679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6721  ax-cnex 9745  ax-resscn 9746  ax-1cn 9747  ax-icn 9748  ax-addcl 9749  ax-addrcl 9750  ax-mulcl 9751  ax-mulrcl 9752  ax-mulcom 9753  ax-addass 9754  ax-mulass 9755  ax-distr 9756  ax-i2m1 9757  ax-1ne0 9758  ax-1rid 9759  ax-rnegex 9760  ax-rrecex 9761  ax-cnre 9762  ax-pre-lttri 9763  ax-pre-lttrn 9764  ax-pre-ltadd 9765  ax-pre-mulgt0 9766  ax-pre-sup 9767
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-int 4309  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6387  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-om 6832  df-1st 6932  df-2nd 6933  df-wrecs 7167  df-recs 7229  df-rdg 7267  df-1o 7321  df-oadd 7325  df-er 7503  df-map 7620  df-en 7716  df-dom 7717  df-sdom 7718  df-fin 7719  df-sup 8105  df-inf 8106  df-pnf 9829  df-mnf 9830  df-xr 9831  df-ltxr 9832  df-le 9833  df-sub 10017  df-neg 10018  df-div 10432  df-nn 10774  df-2 10832  df-3 10833  df-4 10834  df-5 10835  df-6 10836  df-7 10837  df-8 10838  df-9 10839  df-10OLD 10840  df-n0 11046  df-z 11117  df-dec 11232  df-uz 11424  df-q 11527  df-rp 11571  df-xneg 11684  df-xadd 11685  df-xmul 11686  df-ioo 11915  df-fz 12062  df-seq 12528  df-exp 12587  df-cj 13541  df-re 13542  df-im 13543  df-sqrt 13677  df-abs 13678  df-struct 15585  df-ndx 15586  df-slot 15587  df-base 15588  df-sets 15589  df-ress 15590  df-plusg 15669  df-mulr 15670  df-starv 15671  df-tset 15675  df-ple 15676  df-ds 15679  df-unif 15680  df-rest 15794  df-topn 15795  df-topgen 15815  df-psmet 19467  df-xmet 19468  df-met 19469  df-bl 19470  df-mopn 19471  df-cnfld 19476  df-refld 19680  df-top 20428  df-bases 20429  df-topon 20430
This theorem is referenced by:  circtopn  29039  rrhcn  29176  qqtopn  29190  rrhqima  29193  rrhre  29200  dya2icoseg2  29474
  Copyright terms: Public domain W3C validator