Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvfpn Structured version   Visualization version   GIF version

Theorem signsvfpn 31855
Description: Adding a letter of the same sign as the highest coefficient does not change the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signsvf.e (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
signsvf.0 (𝜑 → (𝐸‘0) ≠ 0)
signsvf.f (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
signsvf.a (𝜑𝐴 ∈ ℝ)
signsvf.n 𝑁 = (♯‘𝐸)
signsvf.b 𝐵 = (𝐸‘(𝑁 − 1))
Assertion
Ref Expression
signsvfpn ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝑉𝐹) = (𝑉𝐸))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑓,𝑎,𝑖,𝑗,𝑛,𝐴,𝑏   𝐸,𝑎,𝑏,𝑓,𝑖,𝑗,𝑛   𝑁,𝑎,𝑏,𝑓,𝑖,𝑛   𝑇,𝑎,𝑏,𝑓,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐵(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑗)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvfpn
StepHypRef Expression
1 signsvf.a . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
21recnd 10669 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
3 signsvf.b . . . . . . . . 9 𝐵 = (𝐸‘(𝑁 − 1))
4 signsvf.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
54eldifad 3948 . . . . . . . . . . . 12 (𝜑𝐸 ∈ Word ℝ)
6 wrdf 13867 . . . . . . . . . . . 12 (𝐸 ∈ Word ℝ → 𝐸:(0..^(♯‘𝐸))⟶ℝ)
75, 6syl 17 . . . . . . . . . . 11 (𝜑𝐸:(0..^(♯‘𝐸))⟶ℝ)
8 signsvf.n . . . . . . . . . . . . 13 𝑁 = (♯‘𝐸)
98oveq1i 7166 . . . . . . . . . . . 12 (𝑁 − 1) = ((♯‘𝐸) − 1)
10 eldifsn 4719 . . . . . . . . . . . . . 14 (𝐸 ∈ (Word ℝ ∖ {∅}) ↔ (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
114, 10sylib 220 . . . . . . . . . . . . 13 (𝜑 → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
12 lennncl 13884 . . . . . . . . . . . . 13 ((𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅) → (♯‘𝐸) ∈ ℕ)
13 fzo0end 13130 . . . . . . . . . . . . 13 ((♯‘𝐸) ∈ ℕ → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
1411, 12, 133syl 18 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
159, 14eqeltrid 2917 . . . . . . . . . . 11 (𝜑 → (𝑁 − 1) ∈ (0..^(♯‘𝐸)))
167, 15ffvelrnd 6852 . . . . . . . . . 10 (𝜑 → (𝐸‘(𝑁 − 1)) ∈ ℝ)
1716recnd 10669 . . . . . . . . 9 (𝜑 → (𝐸‘(𝑁 − 1)) ∈ ℂ)
183, 17eqeltrid 2917 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
192, 18mulcomd 10662 . . . . . . 7 (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴))
2019breq2d 5078 . . . . . 6 (𝜑 → (0 < (𝐴 · 𝐵) ↔ 0 < (𝐵 · 𝐴)))
213, 16eqeltrid 2917 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
22 sgnmulsgp 31808 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
231, 21, 22syl2anc 586 . . . . . 6 (𝜑 → (0 < (𝐴 · 𝐵) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
2420, 23bitr3d 283 . . . . 5 (𝜑 → (0 < (𝐵 · 𝐴) ↔ 0 < ((sgn‘𝐴) · (sgn‘𝐵))))
2524biimpa 479 . . . 4 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < ((sgn‘𝐴) · (sgn‘𝐵)))
264adantr 483 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐸 ∈ (Word ℝ ∖ {∅}))
2718adantr 483 . . . . . . . . . 10 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ∈ ℂ)
282adantr 483 . . . . . . . . . 10 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐴 ∈ ℂ)
29 simpr 487 . . . . . . . . . . 11 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < (𝐵 · 𝐴))
3029gt0ne0d 11204 . . . . . . . . . 10 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝐵 · 𝐴) ≠ 0)
3127, 28, 30mulne0bad 11295 . . . . . . . . 9 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ≠ 0)
323, 31eqnetrrid 3091 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝐸‘(𝑁 − 1)) ≠ 0)
33 signsv.p . . . . . . . . . 10 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
34 signsv.w . . . . . . . . . 10 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
35 signsv.t . . . . . . . . . 10 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
36 signsv.v . . . . . . . . . 10 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
3733, 34, 35, 36, 8signsvtn0 31840 . . . . . . . . 9 ((𝐸 ∈ (Word ℝ ∖ {∅}) ∧ (𝐸‘(𝑁 − 1)) ≠ 0) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘(𝐸‘(𝑁 − 1))))
383fveq2i 6673 . . . . . . . . 9 (sgn‘𝐵) = (sgn‘(𝐸‘(𝑁 − 1)))
3937, 38syl6eqr 2874 . . . . . . . 8 ((𝐸 ∈ (Word ℝ ∖ {∅}) ∧ (𝐸‘(𝑁 − 1)) ≠ 0) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘𝐵))
4026, 32, 39syl2anc 586 . . . . . . 7 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → ((𝑇𝐸)‘(𝑁 − 1)) = (sgn‘𝐵))
4140fveq2d 6674 . . . . . 6 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘((𝑇𝐸)‘(𝑁 − 1))) = (sgn‘(sgn‘𝐵)))
4221adantr 483 . . . . . . . 8 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ∈ ℝ)
4342rexrd 10691 . . . . . . 7 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐵 ∈ ℝ*)
44 sgnsgn 31806 . . . . . . 7 (𝐵 ∈ ℝ* → (sgn‘(sgn‘𝐵)) = (sgn‘𝐵))
4543, 44syl 17 . . . . . 6 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘(sgn‘𝐵)) = (sgn‘𝐵))
4641, 45eqtrd 2856 . . . . 5 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘((𝑇𝐸)‘(𝑁 − 1))) = (sgn‘𝐵))
4746oveq2d 7172 . . . 4 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1)))) = ((sgn‘𝐴) · (sgn‘𝐵)))
4825, 47breqtrrd 5094 . . 3 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1)))))
491adantr 483 . . . 4 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 𝐴 ∈ ℝ)
50 sgnclre 31797 . . . . . 6 (𝐵 ∈ ℝ → (sgn‘𝐵) ∈ ℝ)
5142, 50syl 17 . . . . 5 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (sgn‘𝐵) ∈ ℝ)
5240, 51eqeltrd 2913 . . . 4 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → ((𝑇𝐸)‘(𝑁 − 1)) ∈ ℝ)
53 sgnmulsgp 31808 . . . 4 ((𝐴 ∈ ℝ ∧ ((𝑇𝐸)‘(𝑁 − 1)) ∈ ℝ) → (0 < (𝐴 · ((𝑇𝐸)‘(𝑁 − 1))) ↔ 0 < ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1))))))
5449, 52, 53syl2anc 586 . . 3 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (0 < (𝐴 · ((𝑇𝐸)‘(𝑁 − 1))) ↔ 0 < ((sgn‘𝐴) · (sgn‘((𝑇𝐸)‘(𝑁 − 1))))))
5548, 54mpbird 259 . 2 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → 0 < (𝐴 · ((𝑇𝐸)‘(𝑁 − 1))))
56 signsvf.0 . . 3 (𝜑 → (𝐸‘0) ≠ 0)
57 signsvf.f . . 3 (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
58 eqid 2821 . . 3 ((𝑇𝐸)‘(𝑁 − 1)) = ((𝑇𝐸)‘(𝑁 − 1))
5933, 34, 35, 36, 4, 56, 57, 1, 8, 58signsvtp 31853 . 2 ((𝜑 ∧ 0 < (𝐴 · ((𝑇𝐸)‘(𝑁 − 1)))) → (𝑉𝐹) = (𝑉𝐸))
6055, 59syldan 593 1 ((𝜑 ∧ 0 < (𝐵 · 𝐴)) → (𝑉𝐹) = (𝑉𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  cdif 3933  c0 4291  ifcif 4467  {csn 4567  {cpr 4569  {ctp 4571  cop 4573   class class class wbr 5066  cmpt 5146  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  cc 10535  cr 10536  0cc0 10537  1c1 10538   · cmul 10542  *cxr 10674   < clt 10675  cmin 10870  -cneg 10871  cn 11638  ...cfz 12893  ..^cfzo 13034  chash 13691  Word cword 13862   ++ cconcat 13922  ⟨“cs1 13949  sgncsgn 14445  Σcsu 15042  ndxcnx 16480  Basecbs 16483  +gcplusg 16565   Σg cgsu 16714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-word 13863  df-lsw 13915  df-concat 13923  df-s1 13950  df-substr 14003  df-pfx 14033  df-sgn 14446  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-0g 16715  df-gsum 16716  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mulg 18225  df-cntz 18447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator