Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smatrcl Structured version   Visualization version   GIF version

Theorem smatrcl 31061
Description: Closure of the rectangular submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.)
Hypotheses
Ref Expression
smat.s 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
smat.m (𝜑𝑀 ∈ ℕ)
smat.n (𝜑𝑁 ∈ ℕ)
smat.k (𝜑𝐾 ∈ (1...𝑀))
smat.l (𝜑𝐿 ∈ (1...𝑁))
smat.a (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
Assertion
Ref Expression
smatrcl (𝜑𝑆 ∈ (𝐵m ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))))

Proof of Theorem smatrcl
Dummy variables 𝑖 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smat.a . . . . . . . 8 (𝜑𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))))
2 elmapi 8428 . . . . . . . 8 (𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))) → 𝐴:((1...𝑀) × (1...𝑁))⟶𝐵)
3 ffun 6517 . . . . . . . 8 (𝐴:((1...𝑀) × (1...𝑁))⟶𝐵 → Fun 𝐴)
41, 2, 33syl 18 . . . . . . 7 (𝜑 → Fun 𝐴)
5 eqid 2821 . . . . . . . . 9 (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) = (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
65mpofun 7276 . . . . . . . 8 Fun (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
76a1i 11 . . . . . . 7 (𝜑 → Fun (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))
8 funco 6395 . . . . . . 7 ((Fun 𝐴 ∧ Fun (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) → Fun (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
94, 7, 8syl2anc 586 . . . . . 6 (𝜑 → Fun (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
10 smat.s . . . . . . . 8 𝑆 = (𝐾(subMat1‘𝐴)𝐿)
11 fz1ssnn 12939 . . . . . . . . . 10 (1...𝑀) ⊆ ℕ
12 smat.k . . . . . . . . . 10 (𝜑𝐾 ∈ (1...𝑀))
1311, 12sseldi 3965 . . . . . . . . 9 (𝜑𝐾 ∈ ℕ)
14 fz1ssnn 12939 . . . . . . . . . 10 (1...𝑁) ⊆ ℕ
15 smat.l . . . . . . . . . 10 (𝜑𝐿 ∈ (1...𝑁))
1614, 15sseldi 3965 . . . . . . . . 9 (𝜑𝐿 ∈ ℕ)
17 smatfval 31060 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁)))) → (𝐾(subMat1‘𝐴)𝐿) = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
1813, 16, 1, 17syl3anc 1367 . . . . . . . 8 (𝜑 → (𝐾(subMat1‘𝐴)𝐿) = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
1910, 18syl5eq 2868 . . . . . . 7 (𝜑𝑆 = (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
2019funeqd 6377 . . . . . 6 (𝜑 → (Fun 𝑆 ↔ Fun (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩))))
219, 20mpbird 259 . . . . 5 (𝜑 → Fun 𝑆)
22 fdmrn 6538 . . . . 5 (Fun 𝑆𝑆:dom 𝑆⟶ran 𝑆)
2321, 22sylib 220 . . . 4 (𝜑𝑆:dom 𝑆⟶ran 𝑆)
2419dmeqd 5774 . . . . . 6 (𝜑 → dom 𝑆 = dom (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
25 dmco 6107 . . . . . . 7 dom (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) = ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ dom 𝐴)
26 fdm 6522 . . . . . . . . . . . 12 (𝐴:((1...𝑀) × (1...𝑁))⟶𝐵 → dom 𝐴 = ((1...𝑀) × (1...𝑁)))
271, 2, 263syl 18 . . . . . . . . . . 11 (𝜑 → dom 𝐴 = ((1...𝑀) × (1...𝑁)))
2827imaeq2d 5929 . . . . . . . . . 10 (𝜑 → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ dom 𝐴) = ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ ((1...𝑀) × (1...𝑁))))
2928eleq2d 2898 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ dom 𝐴) ↔ 𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ ((1...𝑀) × (1...𝑁)))))
30 opex 5356 . . . . . . . . . . . 12 ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ ∈ V
315, 30fnmpoi 7768 . . . . . . . . . . 11 (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) Fn (ℕ × ℕ)
32 elpreima 6828 . . . . . . . . . . 11 ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) Fn (ℕ × ℕ) → (𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ ((1...𝑀) × (1...𝑁))) ↔ (𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)))))
3331, 32ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ ((1...𝑀) × (1...𝑁))) ↔ (𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))))
3433a1i 11 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ ((1...𝑀) × (1...𝑁))) ↔ (𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)))))
35 simplr 767 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
3635fveq2d 6674 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) = ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨(1st𝑥), (2nd𝑥)⟩))
37 df-ov 7159 . . . . . . . . . . . . . . . . . 18 ((1st𝑥)(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)(2nd𝑥)) = ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘⟨(1st𝑥), (2nd𝑥)⟩)
3836, 37syl6eqr 2874 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) = ((1st𝑥)(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)(2nd𝑥)))
39 breq1 5069 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (1st𝑥) → (𝑖 < 𝐾 ↔ (1st𝑥) < 𝐾))
40 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (1st𝑥) → 𝑖 = (1st𝑥))
41 oveq1 7163 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (1st𝑥) → (𝑖 + 1) = ((1st𝑥) + 1))
4239, 40, 41ifbieq12d 4494 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = (1st𝑥) → if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)) = if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)))
4342opeq1d 4809 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (1st𝑥) → ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ = ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)
44 breq1 5069 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = (2nd𝑥) → (𝑗 < 𝐿 ↔ (2nd𝑥) < 𝐿))
45 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = (2nd𝑥) → 𝑗 = (2nd𝑥))
46 oveq1 7163 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = (2nd𝑥) → (𝑗 + 1) = ((2nd𝑥) + 1))
4744, 45, 46ifbieq12d 4494 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = (2nd𝑥) → if(𝑗 < 𝐿, 𝑗, (𝑗 + 1)) = if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)))
4847opeq2d 4810 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (2nd𝑥) → ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩ = ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩)
49 opex 5356 . . . . . . . . . . . . . . . . . . 19 ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩ ∈ V
5043, 48, 5, 49ovmpo 7310 . . . . . . . . . . . . . . . . . 18 (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) → ((1st𝑥)(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)(2nd𝑥)) = ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩)
5150adantl 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((1st𝑥)(𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)(2nd𝑥)) = ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩)
5238, 51eqtrd 2856 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) = ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩)
5352eleq1d 2897 . . . . . . . . . . . . . . 15 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)) ↔ ⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩ ∈ ((1...𝑀) × (1...𝑁))))
54 opelxp 5591 . . . . . . . . . . . . . . 15 (⟨if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)), if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1))⟩ ∈ ((1...𝑀) × (1...𝑁)) ↔ (if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)) ∈ (1...𝑀) ∧ if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)) ∈ (1...𝑁)))
5553, 54syl6bb 289 . . . . . . . . . . . . . 14 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)) ↔ (if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)) ∈ (1...𝑀) ∧ if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)) ∈ (1...𝑁))))
56 ifel 4510 . . . . . . . . . . . . . . . 16 (if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)) ∈ (1...𝑀) ↔ (((1st𝑥) < 𝐾 ∧ (1st𝑥) ∈ (1...𝑀)) ∨ (¬ (1st𝑥) < 𝐾 ∧ ((1st𝑥) + 1) ∈ (1...𝑀))))
57 simplrl 775 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ∈ ℕ)
5857nnred 11653 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ∈ ℝ)
5913nnred 11653 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐾 ∈ ℝ)
6059ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → 𝐾 ∈ ℝ)
61 smat.m . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑀 ∈ ℕ)
6261nnred 11653 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑀 ∈ ℝ)
6362ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → 𝑀 ∈ ℝ)
64 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) < 𝐾)
6558, 60, 64ltled 10788 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ≤ 𝐾)
66 elfzle2 12912 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾 ∈ (1...𝑀) → 𝐾𝑀)
6712, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐾𝑀)
6867ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → 𝐾𝑀)
6958, 60, 63, 65, 68letrd 10797 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ≤ 𝑀)
7057, 69jca 514 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ 𝑀))
7161nnzd 12087 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀 ∈ ℤ)
72 fznn 12976 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℤ → ((1st𝑥) ∈ (1...𝑀) ↔ ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ 𝑀)))
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((1st𝑥) ∈ (1...𝑀) ↔ ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ 𝑀)))
7473ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → ((1st𝑥) ∈ (1...𝑀) ↔ ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ 𝑀)))
7570, 74mpbird 259 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ∈ (1...𝑀))
7658, 60, 63, 64, 68ltletrd 10800 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) < 𝑀)
7761ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → 𝑀 ∈ ℕ)
78 nnltlem1 12050 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑥) ∈ ℕ ∧ 𝑀 ∈ ℕ) → ((1st𝑥) < 𝑀 ↔ (1st𝑥) ≤ (𝑀 − 1)))
7957, 77, 78syl2anc 586 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → ((1st𝑥) < 𝑀 ↔ (1st𝑥) ≤ (𝑀 − 1)))
8076, 79mpbid 234 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → (1st𝑥) ≤ (𝑀 − 1))
8175, 802thd 267 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (1st𝑥) < 𝐾) → ((1st𝑥) ∈ (1...𝑀) ↔ (1st𝑥) ≤ (𝑀 − 1)))
8281pm5.32da 581 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((1st𝑥) < 𝐾 ∧ (1st𝑥) ∈ (1...𝑀)) ↔ ((1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1))))
83 fznn 12976 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℤ → (((1st𝑥) + 1) ∈ (1...𝑀) ↔ (((1st𝑥) + 1) ∈ ℕ ∧ ((1st𝑥) + 1) ≤ 𝑀)))
8471, 83syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((1st𝑥) + 1) ∈ (1...𝑀) ↔ (((1st𝑥) + 1) ∈ ℕ ∧ ((1st𝑥) + 1) ≤ 𝑀)))
8584ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((1st𝑥) + 1) ∈ (1...𝑀) ↔ (((1st𝑥) + 1) ∈ ℕ ∧ ((1st𝑥) + 1) ≤ 𝑀)))
86 simprl 769 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (1st𝑥) ∈ ℕ)
8786peano2nnd 11655 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((1st𝑥) + 1) ∈ ℕ)
8887biantrurd 535 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((1st𝑥) + 1) ≤ 𝑀 ↔ (((1st𝑥) + 1) ∈ ℕ ∧ ((1st𝑥) + 1) ≤ 𝑀)))
8986nnzd 12087 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (1st𝑥) ∈ ℤ)
9071ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → 𝑀 ∈ ℤ)
91 zltp1le 12033 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑥) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((1st𝑥) < 𝑀 ↔ ((1st𝑥) + 1) ≤ 𝑀))
92 zltlem1 12036 . . . . . . . . . . . . . . . . . . . . . 22 (((1st𝑥) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((1st𝑥) < 𝑀 ↔ (1st𝑥) ≤ (𝑀 − 1)))
9391, 92bitr3d 283 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑥) ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((1st𝑥) + 1) ≤ 𝑀 ↔ (1st𝑥) ≤ (𝑀 − 1)))
9489, 90, 93syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((1st𝑥) + 1) ≤ 𝑀 ↔ (1st𝑥) ≤ (𝑀 − 1)))
9585, 88, 943bitr2d 309 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((1st𝑥) + 1) ∈ (1...𝑀) ↔ (1st𝑥) ≤ (𝑀 − 1)))
9695anbi2d 630 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((¬ (1st𝑥) < 𝐾 ∧ ((1st𝑥) + 1) ∈ (1...𝑀)) ↔ (¬ (1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1))))
9782, 96orbi12d 915 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((((1st𝑥) < 𝐾 ∧ (1st𝑥) ∈ (1...𝑀)) ∨ (¬ (1st𝑥) < 𝐾 ∧ ((1st𝑥) + 1) ∈ (1...𝑀))) ↔ (((1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)) ∨ (¬ (1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)))))
98 pm4.42 1048 . . . . . . . . . . . . . . . . . 18 ((1st𝑥) ≤ (𝑀 − 1) ↔ (((1st𝑥) ≤ (𝑀 − 1) ∧ (1st𝑥) < 𝐾) ∨ ((1st𝑥) ≤ (𝑀 − 1) ∧ ¬ (1st𝑥) < 𝐾)))
99 ancom 463 . . . . . . . . . . . . . . . . . . 19 (((1st𝑥) ≤ (𝑀 − 1) ∧ (1st𝑥) < 𝐾) ↔ ((1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)))
100 ancom 463 . . . . . . . . . . . . . . . . . . 19 (((1st𝑥) ≤ (𝑀 − 1) ∧ ¬ (1st𝑥) < 𝐾) ↔ (¬ (1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)))
10199, 100orbi12i 911 . . . . . . . . . . . . . . . . . 18 ((((1st𝑥) ≤ (𝑀 − 1) ∧ (1st𝑥) < 𝐾) ∨ ((1st𝑥) ≤ (𝑀 − 1) ∧ ¬ (1st𝑥) < 𝐾)) ↔ (((1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)) ∨ (¬ (1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1))))
10298, 101bitri 277 . . . . . . . . . . . . . . . . 17 ((1st𝑥) ≤ (𝑀 − 1) ↔ (((1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1)) ∨ (¬ (1st𝑥) < 𝐾 ∧ (1st𝑥) ≤ (𝑀 − 1))))
10397, 102syl6bbr 291 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((((1st𝑥) < 𝐾 ∧ (1st𝑥) ∈ (1...𝑀)) ∨ (¬ (1st𝑥) < 𝐾 ∧ ((1st𝑥) + 1) ∈ (1...𝑀))) ↔ (1st𝑥) ≤ (𝑀 − 1)))
10456, 103syl5bb 285 . . . . . . . . . . . . . . 15 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)) ∈ (1...𝑀) ↔ (1st𝑥) ≤ (𝑀 − 1)))
105 ifel 4510 . . . . . . . . . . . . . . . 16 (if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)) ∈ (1...𝑁) ↔ (((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ∈ (1...𝑁)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ ((2nd𝑥) + 1) ∈ (1...𝑁))))
106 simplrr 776 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ∈ ℕ)
107106nnred 11653 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ∈ ℝ)
10816nnred 11653 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐿 ∈ ℝ)
109108ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → 𝐿 ∈ ℝ)
110 smat.n . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑁 ∈ ℕ)
111110nnred 11653 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑁 ∈ ℝ)
112111ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → 𝑁 ∈ ℝ)
113 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) < 𝐿)
114107, 109, 113ltled 10788 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ≤ 𝐿)
115 elfzle2 12912 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿 ∈ (1...𝑁) → 𝐿𝑁)
11615, 115syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐿𝑁)
117116ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → 𝐿𝑁)
118107, 109, 112, 114, 117letrd 10797 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ≤ 𝑁)
119106, 118jca 514 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ 𝑁))
120110nnzd 12087 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑁 ∈ ℤ)
121 fznn 12976 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℤ → ((2nd𝑥) ∈ (1...𝑁) ↔ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ 𝑁)))
122120, 121syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((2nd𝑥) ∈ (1...𝑁) ↔ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ 𝑁)))
123122ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → ((2nd𝑥) ∈ (1...𝑁) ↔ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ 𝑁)))
124119, 123mpbird 259 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ∈ (1...𝑁))
125107, 109, 112, 113, 117ltletrd 10800 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) < 𝑁)
126110ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → 𝑁 ∈ ℕ)
127 nnltlem1 12050 . . . . . . . . . . . . . . . . . . . . . 22 (((2nd𝑥) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2nd𝑥) < 𝑁 ↔ (2nd𝑥) ≤ (𝑁 − 1)))
128106, 126, 127syl2anc 586 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → ((2nd𝑥) < 𝑁 ↔ (2nd𝑥) ≤ (𝑁 − 1)))
129125, 128mpbid 234 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → (2nd𝑥) ≤ (𝑁 − 1))
130124, 1292thd 267 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ (2nd𝑥) < 𝐿) → ((2nd𝑥) ∈ (1...𝑁) ↔ (2nd𝑥) ≤ (𝑁 − 1)))
131130pm5.32da 581 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ∈ (1...𝑁)) ↔ ((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1))))
132 fznn 12976 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℤ → (((2nd𝑥) + 1) ∈ (1...𝑁) ↔ (((2nd𝑥) + 1) ∈ ℕ ∧ ((2nd𝑥) + 1) ≤ 𝑁)))
133120, 132syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (((2nd𝑥) + 1) ∈ (1...𝑁) ↔ (((2nd𝑥) + 1) ∈ ℕ ∧ ((2nd𝑥) + 1) ≤ 𝑁)))
134133ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((2nd𝑥) + 1) ∈ (1...𝑁) ↔ (((2nd𝑥) + 1) ∈ ℕ ∧ ((2nd𝑥) + 1) ≤ 𝑁)))
135 simprr 771 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (2nd𝑥) ∈ ℕ)
136135peano2nnd 11655 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((2nd𝑥) + 1) ∈ ℕ)
137136biantrurd 535 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((2nd𝑥) + 1) ≤ 𝑁 ↔ (((2nd𝑥) + 1) ∈ ℕ ∧ ((2nd𝑥) + 1) ≤ 𝑁)))
138135nnzd 12087 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (2nd𝑥) ∈ ℤ)
139120ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → 𝑁 ∈ ℤ)
140 zltp1le 12033 . . . . . . . . . . . . . . . . . . . . . 22 (((2nd𝑥) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((2nd𝑥) < 𝑁 ↔ ((2nd𝑥) + 1) ≤ 𝑁))
141 zltlem1 12036 . . . . . . . . . . . . . . . . . . . . . 22 (((2nd𝑥) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((2nd𝑥) < 𝑁 ↔ (2nd𝑥) ≤ (𝑁 − 1)))
142140, 141bitr3d 283 . . . . . . . . . . . . . . . . . . . . 21 (((2nd𝑥) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((2nd𝑥) + 1) ≤ 𝑁 ↔ (2nd𝑥) ≤ (𝑁 − 1)))
143138, 139, 142syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((2nd𝑥) + 1) ≤ 𝑁 ↔ (2nd𝑥) ≤ (𝑁 − 1)))
144134, 137, 1433bitr2d 309 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((2nd𝑥) + 1) ∈ (1...𝑁) ↔ (2nd𝑥) ≤ (𝑁 − 1)))
145144anbi2d 630 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((¬ (2nd𝑥) < 𝐿 ∧ ((2nd𝑥) + 1) ∈ (1...𝑁)) ↔ (¬ (2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1))))
146131, 145orbi12d 915 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ∈ (1...𝑁)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ ((2nd𝑥) + 1) ∈ (1...𝑁))) ↔ (((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)))))
147 pm4.42 1048 . . . . . . . . . . . . . . . . . 18 ((2nd𝑥) ≤ (𝑁 − 1) ↔ (((2nd𝑥) ≤ (𝑁 − 1) ∧ (2nd𝑥) < 𝐿) ∨ ((2nd𝑥) ≤ (𝑁 − 1) ∧ ¬ (2nd𝑥) < 𝐿)))
148 ancom 463 . . . . . . . . . . . . . . . . . . 19 (((2nd𝑥) ≤ (𝑁 − 1) ∧ (2nd𝑥) < 𝐿) ↔ ((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)))
149 ancom 463 . . . . . . . . . . . . . . . . . . 19 (((2nd𝑥) ≤ (𝑁 − 1) ∧ ¬ (2nd𝑥) < 𝐿) ↔ (¬ (2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)))
150148, 149orbi12i 911 . . . . . . . . . . . . . . . . . 18 ((((2nd𝑥) ≤ (𝑁 − 1) ∧ (2nd𝑥) < 𝐿) ∨ ((2nd𝑥) ≤ (𝑁 − 1) ∧ ¬ (2nd𝑥) < 𝐿)) ↔ (((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1))))
151147, 150bitri 277 . . . . . . . . . . . . . . . . 17 ((2nd𝑥) ≤ (𝑁 − 1) ↔ (((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ (2nd𝑥) ≤ (𝑁 − 1))))
152146, 151syl6bbr 291 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((((2nd𝑥) < 𝐿 ∧ (2nd𝑥) ∈ (1...𝑁)) ∨ (¬ (2nd𝑥) < 𝐿 ∧ ((2nd𝑥) + 1) ∈ (1...𝑁))) ↔ (2nd𝑥) ≤ (𝑁 − 1)))
153105, 152syl5bb 285 . . . . . . . . . . . . . . 15 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)) ∈ (1...𝑁) ↔ (2nd𝑥) ≤ (𝑁 − 1)))
154104, 153anbi12d 632 . . . . . . . . . . . . . 14 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → ((if((1st𝑥) < 𝐾, (1st𝑥), ((1st𝑥) + 1)) ∈ (1...𝑀) ∧ if((2nd𝑥) < 𝐿, (2nd𝑥), ((2nd𝑥) + 1)) ∈ (1...𝑁)) ↔ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1))))
15555, 154bitrd 281 . . . . . . . . . . . . 13 (((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) → (((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)) ↔ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1))))
156155pm5.32da 581 . . . . . . . . . . . 12 ((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) → ((((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1)))))
157 1zzd 12014 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℤ)
15871, 157zsubcld 12093 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 − 1) ∈ ℤ)
159 fznn 12976 . . . . . . . . . . . . . . . 16 ((𝑀 − 1) ∈ ℤ → ((1st𝑥) ∈ (1...(𝑀 − 1)) ↔ ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ (𝑀 − 1))))
160158, 159syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((1st𝑥) ∈ (1...(𝑀 − 1)) ↔ ((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ (𝑀 − 1))))
161120, 157zsubcld 12093 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 1) ∈ ℤ)
162 fznn 12976 . . . . . . . . . . . . . . . 16 ((𝑁 − 1) ∈ ℤ → ((2nd𝑥) ∈ (1...(𝑁 − 1)) ↔ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ (𝑁 − 1))))
163161, 162syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((2nd𝑥) ∈ (1...(𝑁 − 1)) ↔ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ (𝑁 − 1))))
164160, 163anbi12d 632 . . . . . . . . . . . . . 14 (𝜑 → (((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1))) ↔ (((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ (𝑀 − 1)) ∧ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ (𝑁 − 1)))))
165 an4 654 . . . . . . . . . . . . . 14 ((((1st𝑥) ∈ ℕ ∧ (1st𝑥) ≤ (𝑀 − 1)) ∧ ((2nd𝑥) ∈ ℕ ∧ (2nd𝑥) ≤ (𝑁 − 1))) ↔ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1))))
166164, 165syl6bb 289 . . . . . . . . . . . . 13 (𝜑 → (((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1))) ↔ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1)))))
167166adantr 483 . . . . . . . . . . . 12 ((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) → (((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1))) ↔ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((1st𝑥) ≤ (𝑀 − 1) ∧ (2nd𝑥) ≤ (𝑁 − 1)))))
168156, 167bitr4d 284 . . . . . . . . . . 11 ((𝜑𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩) → ((((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ ((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1)))))
169168pm5.32da 581 . . . . . . . . . 10 (𝜑 → ((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)))) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1))))))
170 elxp6 7723 . . . . . . . . . . . 12 (𝑥 ∈ (ℕ × ℕ) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)))
171170anbi1i 625 . . . . . . . . . . 11 ((𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ ((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))))
172 anass 471 . . . . . . . . . . 11 (((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ)) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)))))
173171, 172bitri 277 . . . . . . . . . 10 ((𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ (((1st𝑥) ∈ ℕ ∧ (2nd𝑥) ∈ ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁)))))
174 elxp6 7723 . . . . . . . . . 10 (𝑥 ∈ ((1...(𝑀 − 1)) × (1...(𝑁 − 1))) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ (1...(𝑀 − 1)) ∧ (2nd𝑥) ∈ (1...(𝑁 − 1)))))
175169, 173, 1743bitr4g 316 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ (ℕ × ℕ) ∧ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)‘𝑥) ∈ ((1...𝑀) × (1...𝑁))) ↔ 𝑥 ∈ ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))))
17629, 34, 1753bitrd 307 . . . . . . . 8 (𝜑 → (𝑥 ∈ ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ dom 𝐴) ↔ 𝑥 ∈ ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))))
177176eqrdv 2819 . . . . . . 7 (𝜑 → ((𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩) “ dom 𝐴) = ((1...(𝑀 − 1)) × (1...(𝑁 − 1))))
17825, 177syl5eq 2868 . . . . . 6 (𝜑 → dom (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) = ((1...(𝑀 − 1)) × (1...(𝑁 − 1))))
17924, 178eqtrd 2856 . . . . 5 (𝜑 → dom 𝑆 = ((1...(𝑀 − 1)) × (1...(𝑁 − 1))))
180179feq2d 6500 . . . 4 (𝜑 → (𝑆:dom 𝑆⟶ran 𝑆𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶ran 𝑆))
18123, 180mpbid 234 . . 3 (𝜑𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶ran 𝑆)
18219rneqd 5808 . . . . 5 (𝜑 → ran 𝑆 = ran (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)))
183 rncoss 5843 . . . . 5 ran (𝐴 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))⟩)) ⊆ ran 𝐴
184182, 183eqsstrdi 4021 . . . 4 (𝜑 → ran 𝑆 ⊆ ran 𝐴)
185 frn 6520 . . . . 5 (𝐴:((1...𝑀) × (1...𝑁))⟶𝐵 → ran 𝐴𝐵)
1861, 2, 1853syl 18 . . . 4 (𝜑 → ran 𝐴𝐵)
187184, 186sstrd 3977 . . 3 (𝜑 → ran 𝑆𝐵)
188 fss 6527 . . 3 ((𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶ran 𝑆 ∧ ran 𝑆𝐵) → 𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶𝐵)
189181, 187, 188syl2anc 586 . 2 (𝜑𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶𝐵)
190 reldmmap 8415 . . . . . 6 Rel dom ↑m
191190ovrcl 7197 . . . . 5 (𝐴 ∈ (𝐵m ((1...𝑀) × (1...𝑁))) → (𝐵 ∈ V ∧ ((1...𝑀) × (1...𝑁)) ∈ V))
1921, 191syl 17 . . . 4 (𝜑 → (𝐵 ∈ V ∧ ((1...𝑀) × (1...𝑁)) ∈ V))
193192simpld 497 . . 3 (𝜑𝐵 ∈ V)
194 ovex 7189 . . . 4 (1...(𝑀 − 1)) ∈ V
195 ovex 7189 . . . 4 (1...(𝑁 − 1)) ∈ V
196194, 195xpex 7476 . . 3 ((1...(𝑀 − 1)) × (1...(𝑁 − 1))) ∈ V
197 elmapg 8419 . . 3 ((𝐵 ∈ V ∧ ((1...(𝑀 − 1)) × (1...(𝑁 − 1))) ∈ V) → (𝑆 ∈ (𝐵m ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))) ↔ 𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶𝐵))
198193, 196, 197sylancl 588 . 2 (𝜑 → (𝑆 ∈ (𝐵m ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))) ↔ 𝑆:((1...(𝑀 − 1)) × (1...(𝑁 − 1)))⟶𝐵))
199189, 198mpbird 259 1 (𝜑𝑆 ∈ (𝐵m ((1...(𝑀 − 1)) × (1...(𝑁 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  Vcvv 3494  wss 3936  ifcif 4467  cop 4573   class class class wbr 5066   × cxp 5553  ccnv 5554  dom cdm 5555  ran crn 5556  cima 5558  ccom 5559  Fun wfun 6349   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  1st c1st 7687  2nd c2nd 7688  m cmap 8406  cr 10536  1c1 10538   + caddc 10540   < clt 10675  cle 10676  cmin 10870  cn 11638  cz 11982  ...cfz 12893  subMat1csmat 31058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-smat 31059
This theorem is referenced by:  smatcl  31067  1smat1  31069
  Copyright terms: Public domain W3C validator