MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fznn Structured version   Visualization version   GIF version

Theorem fznn 12621
Description: Finite set of sequential integers starting at 1. (Contributed by NM, 31-Aug-2011.) (Revised by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
fznn (𝑁 ∈ ℤ → (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝐾𝑁)))

Proof of Theorem fznn
StepHypRef Expression
1 elfzuzb 12549 . . 3 (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ𝐾)))
2 elnnuz 11937 . . . 4 (𝐾 ∈ ℕ ↔ 𝐾 ∈ (ℤ‘1))
32anbi1i 733 . . 3 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐾)) ↔ (𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ (ℤ𝐾)))
41, 3bitr4i 267 . 2 (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐾)))
5 nnz 11611 . . . . 5 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
6 eluz 11913 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝐾) ↔ 𝐾𝑁))
75, 6sylan 489 . . . 4 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝐾) ↔ 𝐾𝑁))
87ancoms 468 . . 3 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝑁 ∈ (ℤ𝐾) ↔ 𝐾𝑁))
98pm5.32da 676 . 2 (𝑁 ∈ ℤ → ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐾)) ↔ (𝐾 ∈ ℕ ∧ 𝐾𝑁)))
104, 9syl5bb 272 1 (𝑁 ∈ ℤ → (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝐾𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wcel 2139   class class class wbr 4804  cfv 6049  (class class class)co 6814  1c1 10149  cle 10287  cn 11232  cz 11589  cuz 11899  ...cfz 12539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-z 11590  df-uz 11900  df-fz 12540
This theorem is referenced by:  elfz1b  12622  elfz1uz  12623  fznnfl  12875  isercoll  14617  incexc2  14789  dvdsssfz1  15262  prmind2  15620  vdwlem6  15912  prmdvdsprmo  15968  odlem2  18178  gexlem2  18217  gexcl2  18224  efgredlemd  18377  efgredlem  18380  ablfac1eu  18692  ablfaclem3  18706  dvdsflf1o  25133  vmasum  25161  logfac2  25162  lgseisenlem1  25320  lgseisenlem2  25321  lgseisenlem3  25322  lgsquadlem1  25325  lgsquadlem2  25326  2sqlem8  25371  chebbnd1lem1  25378  wwlksnredwwlkn0  27035  clwwlkf  27197  psgnfzto1stlem  30180  smatrcl  30192  reprinfz1  31030  poimirlem13  33753  poimirlem15  33755
  Copyright terms: Public domain W3C validator