Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem30 Structured version   Visualization version   GIF version

Theorem stoweidlem30 42400
Description: This lemma is used to prove the existence of a function p as in Lemma 1 [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem30.1 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem30.2 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem30.3 (𝜑𝑀 ∈ ℕ)
stoweidlem30.4 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem30.5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
stoweidlem30 ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
Distinct variable groups:   𝑓,𝑖,𝑇   𝐴,𝑓   𝑓,𝐺   𝜑,𝑓,𝑖   ,𝑖,𝑡,𝑇   𝐴,   ,𝐺,𝑡   ,𝑍   𝑖,𝑀,𝑡   𝑆,𝑖
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡,𝑖)   𝑃(𝑡,𝑓,,𝑖)   𝑄(𝑡,𝑓,,𝑖)   𝑆(𝑡,𝑓,)   𝐺(𝑖)   𝑀(𝑓,)   𝑍(𝑡,𝑓,𝑖)

Proof of Theorem stoweidlem30
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2898 . . . . 5 (𝑠 = 𝑆 → (𝑠𝑇𝑆𝑇))
21anbi2d 630 . . . 4 (𝑠 = 𝑆 → ((𝜑𝑠𝑇) ↔ (𝜑𝑆𝑇)))
3 fveq2 6651 . . . . 5 (𝑠 = 𝑆 → (𝑃𝑠) = (𝑃𝑆))
4 fveq2 6651 . . . . . . 7 (𝑠 = 𝑆 → ((𝐺𝑖)‘𝑠) = ((𝐺𝑖)‘𝑆))
54sumeq2sdv 15041 . . . . . 6 (𝑠 = 𝑆 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆))
65oveq2d 7153 . . . . 5 (𝑠 = 𝑆 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
73, 6eqeq12d 2836 . . . 4 (𝑠 = 𝑆 → ((𝑃𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)) ↔ (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆))))
82, 7imbi12d 347 . . 3 (𝑠 = 𝑆 → (((𝜑𝑠𝑇) → (𝑃𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))) ↔ ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))))
9 stoweidlem30.2 . . . 4 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
10 fveq2 6651 . . . . . 6 (𝑡 = 𝑠 → ((𝐺𝑖)‘𝑡) = ((𝐺𝑖)‘𝑠))
1110sumeq2sdv 15041 . . . . 5 (𝑡 = 𝑠 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡) = Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠))
1211oveq2d 7153 . . . 4 (𝑡 = 𝑠 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)))
13 simpr 487 . . . 4 ((𝜑𝑠𝑇) → 𝑠𝑇)
14 stoweidlem30.3 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
1514nnrecred 11670 . . . . . 6 (𝜑 → (1 / 𝑀) ∈ ℝ)
1615adantr 483 . . . . 5 ((𝜑𝑠𝑇) → (1 / 𝑀) ∈ ℝ)
17 fzfid 13326 . . . . . 6 ((𝜑𝑠𝑇) → (1...𝑀) ∈ Fin)
18 stoweidlem30.1 . . . . . . . . 9 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
19 stoweidlem30.4 . . . . . . . . 9 (𝜑𝐺:(1...𝑀)⟶𝑄)
20 stoweidlem30.5 . . . . . . . . 9 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
2118, 19, 20stoweidlem15 42385 . . . . . . . 8 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑠𝑇) → (((𝐺𝑖)‘𝑠) ∈ ℝ ∧ 0 ≤ ((𝐺𝑖)‘𝑠) ∧ ((𝐺𝑖)‘𝑠) ≤ 1))
2221simp1d 1138 . . . . . . 7 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑠𝑇) → ((𝐺𝑖)‘𝑠) ∈ ℝ)
2322an32s 650 . . . . . 6 (((𝜑𝑠𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑠) ∈ ℝ)
2417, 23fsumrecl 15071 . . . . 5 ((𝜑𝑠𝑇) → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠) ∈ ℝ)
2516, 24remulcld 10652 . . . 4 ((𝜑𝑠𝑇) → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)) ∈ ℝ)
269, 12, 13, 25fvmptd3 6772 . . 3 ((𝜑𝑠𝑇) → (𝑃𝑠) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑠)))
278, 26vtoclg 3554 . 2 (𝑆𝑇 → ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆))))
2827anabsi7 669 1 ((𝜑𝑆𝑇) → (𝑃𝑆) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3133  {crab 3137   class class class wbr 5047  cmpt 5127  wf 6332  cfv 6336  (class class class)co 7137  cr 10517  0cc0 10518  1c1 10519   · cmul 10523  cle 10657   / cdiv 11278  cn 11619  ...cfz 12877  Σcsu 15022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7442  ax-inf2 9085  ax-cnex 10574  ax-resscn 10575  ax-1cn 10576  ax-icn 10577  ax-addcl 10578  ax-addrcl 10579  ax-mulcl 10580  ax-mulrcl 10581  ax-mulcom 10582  ax-addass 10583  ax-mulass 10584  ax-distr 10585  ax-i2m1 10586  ax-1ne0 10587  ax-1rid 10588  ax-rnegex 10589  ax-rrecex 10590  ax-cnre 10591  ax-pre-lttri 10592  ax-pre-lttrn 10593  ax-pre-ltadd 10594  ax-pre-mulgt0 10595  ax-pre-sup 10596
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3012  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-se 5496  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7095  df-ov 7140  df-oprab 7141  df-mpo 7142  df-om 7562  df-1st 7670  df-2nd 7671  df-wrecs 7928  df-recs 7989  df-rdg 8027  df-1o 8083  df-oadd 8087  df-er 8270  df-en 8491  df-dom 8492  df-sdom 8493  df-fin 8494  df-sup 8887  df-oi 8955  df-card 9349  df-pnf 10658  df-mnf 10659  df-xr 10660  df-ltxr 10661  df-le 10662  df-sub 10853  df-neg 10854  df-div 11279  df-nn 11620  df-2 11682  df-3 11683  df-n0 11880  df-z 11964  df-uz 12226  df-rp 12372  df-fz 12878  df-fzo 13019  df-seq 13355  df-exp 13415  df-hash 13676  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-clim 14825  df-sum 15023
This theorem is referenced by:  stoweidlem37  42407  stoweidlem38  42408  stoweidlem44  42414
  Copyright terms: Public domain W3C validator