Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem37 Structured version   Visualization version   GIF version

Theorem stoweidlem37 42412
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Z is used for t0, P is used for p, (𝐺𝑖) is used for p_(ti). (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem37.1 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem37.2 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
stoweidlem37.3 (𝜑𝑀 ∈ ℕ)
stoweidlem37.4 (𝜑𝐺:(1...𝑀)⟶𝑄)
stoweidlem37.5 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem37.6 (𝜑𝑍𝑇)
Assertion
Ref Expression
stoweidlem37 (𝜑 → (𝑃𝑍) = 0)
Distinct variable groups:   𝑓,𝑖,𝑇   𝐴,𝑓   𝑓,𝐺   𝜑,𝑓,𝑖   ,𝑖,𝑡,𝑇   𝐴,   ,𝐺,𝑡   ,𝑍,𝑖,𝑡   𝑖,𝑀,𝑡
Allowed substitution hints:   𝜑(𝑡,)   𝐴(𝑡,𝑖)   𝑃(𝑡,𝑓,,𝑖)   𝑄(𝑡,𝑓,,𝑖)   𝐺(𝑖)   𝑀(𝑓,)   𝑍(𝑓)

Proof of Theorem stoweidlem37
StepHypRef Expression
1 stoweidlem37.6 . . 3 (𝜑𝑍𝑇)
2 stoweidlem37.1 . . . 4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
3 stoweidlem37.2 . . . 4 𝑃 = (𝑡𝑇 ↦ ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑡)))
4 stoweidlem37.3 . . . 4 (𝜑𝑀 ∈ ℕ)
5 stoweidlem37.4 . . . 4 (𝜑𝐺:(1...𝑀)⟶𝑄)
6 stoweidlem37.5 . . . 4 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
72, 3, 4, 5, 6stoweidlem30 42405 . . 3 ((𝜑𝑍𝑇) → (𝑃𝑍) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍)))
81, 7mpdan 685 . 2 (𝜑 → (𝑃𝑍) = ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍)))
95ffvelrnda 6837 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺𝑖) ∈ 𝑄)
10 fveq1 6655 . . . . . . . . . 10 ( = (𝐺𝑖) → (𝑍) = ((𝐺𝑖)‘𝑍))
1110eqeq1d 2823 . . . . . . . . 9 ( = (𝐺𝑖) → ((𝑍) = 0 ↔ ((𝐺𝑖)‘𝑍) = 0))
12 fveq1 6655 . . . . . . . . . . . 12 ( = (𝐺𝑖) → (𝑡) = ((𝐺𝑖)‘𝑡))
1312breq2d 5064 . . . . . . . . . . 11 ( = (𝐺𝑖) → (0 ≤ (𝑡) ↔ 0 ≤ ((𝐺𝑖)‘𝑡)))
1412breq1d 5062 . . . . . . . . . . 11 ( = (𝐺𝑖) → ((𝑡) ≤ 1 ↔ ((𝐺𝑖)‘𝑡) ≤ 1))
1513, 14anbi12d 632 . . . . . . . . . 10 ( = (𝐺𝑖) → ((0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1)))
1615ralbidv 3197 . . . . . . . . 9 ( = (𝐺𝑖) → (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1)))
1711, 16anbi12d 632 . . . . . . . 8 ( = (𝐺𝑖) → (((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)) ↔ (((𝐺𝑖)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))))
1817, 2elrab2 3674 . . . . . . 7 ((𝐺𝑖) ∈ 𝑄 ↔ ((𝐺𝑖) ∈ 𝐴 ∧ (((𝐺𝑖)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))))
199, 18sylib 220 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐺𝑖) ∈ 𝐴 ∧ (((𝐺𝑖)‘𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ ((𝐺𝑖)‘𝑡) ∧ ((𝐺𝑖)‘𝑡) ≤ 1))))
2019simprld 770 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐺𝑖)‘𝑍) = 0)
2120sumeq2dv 15045 . . . 4 (𝜑 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍) = Σ𝑖 ∈ (1...𝑀)0)
22 fzfi 13330 . . . . 5 (1...𝑀) ∈ Fin
23 olc 864 . . . . 5 ((1...𝑀) ∈ Fin → ((1...𝑀) ⊆ (ℤ‘1) ∨ (1...𝑀) ∈ Fin))
24 sumz 15064 . . . . 5 (((1...𝑀) ⊆ (ℤ‘1) ∨ (1...𝑀) ∈ Fin) → Σ𝑖 ∈ (1...𝑀)0 = 0)
2522, 23, 24mp2b 10 . . . 4 Σ𝑖 ∈ (1...𝑀)0 = 0
2621, 25syl6eq 2872 . . 3 (𝜑 → Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍) = 0)
2726oveq2d 7158 . 2 (𝜑 → ((1 / 𝑀) · Σ𝑖 ∈ (1...𝑀)((𝐺𝑖)‘𝑍)) = ((1 / 𝑀) · 0))
284nncnd 11640 . . . 4 (𝜑𝑀 ∈ ℂ)
294nnne0d 11674 . . . 4 (𝜑𝑀 ≠ 0)
3028, 29reccld 11395 . . 3 (𝜑 → (1 / 𝑀) ∈ ℂ)
3130mul01d 10825 . 2 (𝜑 → ((1 / 𝑀) · 0) = 0)
328, 27, 313eqtrd 2860 1 (𝜑 → (𝑃𝑍) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wral 3138  {crab 3142  wss 3924   class class class wbr 5052  cmpt 5132  wf 6337  cfv 6341  (class class class)co 7142  Fincfn 8495  cr 10522  0cc0 10523  1c1 10524   · cmul 10528  cle 10662   / cdiv 11283  cn 11624  cuz 12230  ...cfz 12882  Σcsu 15027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-inf2 9090  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600  ax-pre-sup 10601
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-se 5501  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-isom 6350  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-sup 8892  df-oi 8960  df-card 9354  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-div 11284  df-nn 11625  df-2 11687  df-3 11688  df-n0 11885  df-z 11969  df-uz 12231  df-rp 12377  df-fz 12883  df-fzo 13024  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14443  df-re 14444  df-im 14445  df-sqrt 14579  df-abs 14580  df-clim 14830  df-sum 15028
This theorem is referenced by:  stoweidlem44  42419
  Copyright terms: Public domain W3C validator