Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlle Structured version   Visualization version   GIF version

Theorem trlle 35290
Description: The trace of a lattice translation is less than the fiducial co-atom 𝑊. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
trlle.l = (le‘𝐾)
trlle.h 𝐻 = (LHyp‘𝐾)
trlle.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlle.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlle (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)

Proof of Theorem trlle
StepHypRef Expression
1 trlle.l . . . . 5 = (le‘𝐾)
2 eqid 2620 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
3 eqid 2620 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
4 trlle.h . . . . 5 𝐻 = (LHyp‘𝐾)
51, 2, 3, 4lhpocnel 35123 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
65adantr 481 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊))
7 eqid 2620 . . . 4 (join‘𝐾) = (join‘𝐾)
8 eqid 2620 . . . 4 (meet‘𝐾) = (meet‘𝐾)
9 trlle.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 trlle.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
111, 7, 8, 3, 4, 9, 10trlval2 35269 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (((oc‘𝐾)‘𝑊) ∈ (Atoms‘𝐾) ∧ ¬ ((oc‘𝐾)‘𝑊) 𝑊)) → (𝑅𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊))
126, 11mpd3an3 1423 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊))
13 hllat 34469 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1413ad2antrr 761 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐾 ∈ Lat)
15 hlop 34468 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
1615ad2antrr 761 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐾 ∈ OP)
17 eqid 2620 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1817, 4lhpbase 35103 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1918ad2antlr 762 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝑊 ∈ (Base‘𝐾))
2017, 2opoccl 34300 . . . . 5 ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
2116, 19, 20syl2anc 692 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾))
2217, 4, 9ltrncl 35230 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾)) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
2321, 22mpd3an3 1423 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐹‘((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾))
2417, 7latjcl 17032 . . . 4 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑊) ∈ (Base‘𝐾) ∧ (𝐹‘((oc‘𝐾)‘𝑊)) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ (Base‘𝐾))
2514, 21, 23, 24syl3anc 1324 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ (Base‘𝐾))
2617, 1, 8latmle2 17058 . . 3 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊))) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) 𝑊)
2714, 25, 19, 26syl3anc 1324 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝐹‘((oc‘𝐾)‘𝑊)))(meet‘𝐾)𝑊) 𝑊)
2812, 27eqbrtrd 4666 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1481  wcel 1988   class class class wbr 4644  cfv 5876  (class class class)co 6635  Basecbs 15838  lecple 15929  occoc 15930  joincjn 16925  meetcmee 16926  Latclat 17026  OPcops 34278  Atomscatm 34369  HLchlt 34456  LHypclh 35089  LTrncltrn 35206  trLctrl 35264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-map 7844  df-preset 16909  df-poset 16927  df-plt 16939  df-lub 16955  df-glb 16956  df-join 16957  df-meet 16958  df-p0 17020  df-p1 17021  df-lat 17027  df-oposet 34282  df-ol 34284  df-oml 34285  df-covers 34372  df-ats 34373  df-atl 34404  df-cvlat 34428  df-hlat 34457  df-lhyp 35093  df-laut 35094  df-ldil 35209  df-ltrn 35210  df-trl 35265
This theorem is referenced by:  trlne  35291  cdlemc5  35301  cdlemg6c  35727  cdlemg10c  35746  cdlemg10  35748  cdlemg17dALTN  35771  cdlemg27a  35799  cdlemg31b0N  35801  cdlemg31b0a  35802  cdlemg27b  35803  cdlemg31c  35806  cdlemg35  35820  cdlemh2  35923  cdlemh  35924  cdlemk3  35940  cdlemk9  35946  cdlemk9bN  35947  cdlemk10  35950  cdlemk12  35957  cdlemk14  35961  cdlemk12u  35979  cdlemkfid1N  36028  cdlemk47  36056  dia1N  36161  dia1dim  36169  dia2dimlem1  36172  dia2dimlem10  36181  dib1dim  36273  cdlemn2a  36304  dih1dimb  36348  dihopelvalcpre  36356  dihwN  36397  dihglblem5apreN  36399  dih1dimatlem  36437
  Copyright terms: Public domain W3C validator