![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrge0tsms2 | Structured version Visualization version GIF version |
Description: Any finite or infinite sum in the nonnegative extended reals is convergent. This is a rather unique property of the set [0, +∞]; a similar theorem is not true for ℝ* or ℝ or [0, +∞). It is true for ℕ0 ∪ {+∞}, however, or more generally any additive submonoid of [0, +∞) with +∞ adjoined. (Contributed by Mario Carneiro, 13-Sep-2015.) |
Ref | Expression |
---|---|
xrge0tsms2.g | ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) |
Ref | Expression |
---|---|
xrge0tsms2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶(0[,]+∞)) → (𝐺 tsums 𝐹) ≈ 1𝑜) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrge0tsms2.g | . . 3 ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) | |
2 | simpl 472 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶(0[,]+∞)) → 𝐴 ∈ 𝑉) | |
3 | simpr 476 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶(0[,]+∞)) → 𝐹:𝐴⟶(0[,]+∞)) | |
4 | eqid 2651 | . . 3 ⊢ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑥))), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑥))), ℝ*, < ) | |
5 | 1, 2, 3, 4 | xrge0tsms 22684 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶(0[,]+∞)) → (𝐺 tsums 𝐹) = {sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑥))), ℝ*, < )}) |
6 | xrltso 12012 | . . . 4 ⊢ < Or ℝ* | |
7 | 6 | supex 8410 | . . 3 ⊢ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑥))), ℝ*, < ) ∈ V |
8 | 7 | ensn1 8061 | . 2 ⊢ {sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑥))), ℝ*, < )} ≈ 1𝑜 |
9 | 5, 8 | syl6eqbr 4724 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶(0[,]+∞)) → (𝐺 tsums 𝐹) ≈ 1𝑜) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∩ cin 3606 𝒫 cpw 4191 {csn 4210 class class class wbr 4685 ↦ cmpt 4762 ran crn 5144 ↾ cres 5145 ⟶wf 5922 (class class class)co 6690 1𝑜c1o 7598 ≈ cen 7994 Fincfn 7997 supcsup 8387 0cc0 9974 +∞cpnf 10109 ℝ*cxr 10111 < clt 10112 [,]cicc 12216 ↾s cress 15905 Σg cgsu 16148 ℝ*𝑠cxrs 16207 tsums ctsu 21976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-fi 8358 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-q 11827 df-xadd 11985 df-ioo 12217 df-ioc 12218 df-ico 12219 df-icc 12220 df-fz 12365 df-fzo 12505 df-seq 12842 df-hash 13158 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-tset 16007 df-ple 16008 df-ds 16011 df-rest 16130 df-topn 16131 df-0g 16149 df-gsum 16150 df-topgen 16151 df-ordt 16208 df-xrs 16209 df-mre 16293 df-mrc 16294 df-acs 16296 df-ps 17247 df-tsr 17248 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-submnd 17383 df-cntz 17796 df-cmn 18241 df-fbas 19791 df-fg 19792 df-top 20747 df-topon 20764 df-topsp 20785 df-bases 20798 df-ntr 20872 df-nei 20950 df-cn 21079 df-haus 21167 df-fil 21697 df-fm 21789 df-flim 21790 df-flf 21791 df-tsms 21977 |
This theorem is referenced by: xrge0tsmsbi 29914 xrge0tsmseq 29915 |
Copyright terms: Public domain | W3C validator |