ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun4 Unicode version

Theorem dffun4 5219
Description: Alternate definition of a function. Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dffun4  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem dffun4
StepHypRef Expression
1 dffun2 5218 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) ) )
2 df-br 3999 . . . . . . 7  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
3 df-br 3999 . . . . . . 7  |-  ( x A z  <->  <. x ,  z >.  e.  A
)
42, 3anbi12i 460 . . . . . 6  |-  ( ( x A y  /\  x A z )  <->  ( <. x ,  y >.  e.  A  /\  <. x ,  z
>.  e.  A ) )
54imbi1i 238 . . . . 5  |-  ( ( ( x A y  /\  x A z )  ->  y  =  z )  <->  ( ( <. x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
65albii 1468 . . . 4  |-  ( A. z ( ( x A y  /\  x A z )  -> 
y  =  z )  <->  A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
762albii 1469 . . 3  |-  ( A. x A. y A. z
( ( x A y  /\  x A z )  ->  y  =  z )  <->  A. x A. y A. z ( ( <. x ,  y
>.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
87anbi2i 457 . 2  |-  ( ( Rel  A  /\  A. x A. y A. z
( ( x A y  /\  x A z )  ->  y  =  z ) )  <-> 
( Rel  A  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) ) )
91, 8bitri 184 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351    e. wcel 2146   <.cop 3592   class class class wbr 3998   Rel wrel 4625   Fun wfun 5202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-id 4287  df-cnv 4628  df-co 4629  df-fun 5210
This theorem is referenced by:  dffun5r  5220  funopg  5242  funun  5252  funinsn  5257  fununi  5276  tfrlem7  6308
  Copyright terms: Public domain W3C validator