ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun4 Unicode version

Theorem dffun4 5301
Description: Alternate definition of a function. Definition 6.4(4) of [TakeutiZaring] p. 24. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dffun4  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem dffun4
StepHypRef Expression
1 dffun2 5300 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) ) )
2 df-br 4060 . . . . . . 7  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
3 df-br 4060 . . . . . . 7  |-  ( x A z  <->  <. x ,  z >.  e.  A
)
42, 3anbi12i 460 . . . . . 6  |-  ( ( x A y  /\  x A z )  <->  ( <. x ,  y >.  e.  A  /\  <. x ,  z
>.  e.  A ) )
54imbi1i 238 . . . . 5  |-  ( ( ( x A y  /\  x A z )  ->  y  =  z )  <->  ( ( <. x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
65albii 1494 . . . 4  |-  ( A. z ( ( x A y  /\  x A z )  -> 
y  =  z )  <->  A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
762albii 1495 . . 3  |-  ( A. x A. y A. z
( ( x A y  /\  x A z )  ->  y  =  z )  <->  A. x A. y A. z ( ( <. x ,  y
>.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
87anbi2i 457 . 2  |-  ( ( Rel  A  /\  A. x A. y A. z
( ( x A y  /\  x A z )  ->  y  =  z ) )  <-> 
( Rel  A  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) ) )
91, 8bitri 184 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    e. wcel 2178   <.cop 3646   class class class wbr 4059   Rel wrel 4698   Fun wfun 5284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-id 4358  df-cnv 4701  df-co 4702  df-fun 5292
This theorem is referenced by:  dffun5r  5302  funopg  5324  funun  5334  funinsn  5342  fununi  5361  tfrlem7  6426
  Copyright terms: Public domain W3C validator