| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ablsub2inv | Unicode version | ||
| Description: Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015.) |
| Ref | Expression |
|---|---|
| ablsub2inv.b |
|
| ablsub2inv.m |
|
| ablsub2inv.n |
|
| ablsub2inv.g |
|
| ablsub2inv.x |
|
| ablsub2inv.y |
|
| Ref | Expression |
|---|---|
| ablsub2inv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsub2inv.b |
. . 3
| |
| 2 | eqid 2207 |
. . 3
| |
| 3 | ablsub2inv.m |
. . 3
| |
| 4 | ablsub2inv.n |
. . 3
| |
| 5 | ablsub2inv.g |
. . . 4
| |
| 6 | ablgrp 13740 |
. . . 4
| |
| 7 | 5, 6 | syl 14 |
. . 3
|
| 8 | ablsub2inv.x |
. . . 4
| |
| 9 | 1, 4 | grpinvcl 13495 |
. . . 4
|
| 10 | 7, 8, 9 | syl2anc 411 |
. . 3
|
| 11 | ablsub2inv.y |
. . 3
| |
| 12 | 1, 2, 3, 4, 7, 10, 11 | grpsubinv 13520 |
. 2
|
| 13 | 1, 2 | ablcom 13754 |
. . . . . 6
|
| 14 | 5, 10, 11, 13 | syl3anc 1250 |
. . . . 5
|
| 15 | 1, 4 | grpinvinv 13514 |
. . . . . . 7
|
| 16 | 7, 11, 15 | syl2anc 411 |
. . . . . 6
|
| 17 | 16 | oveq1d 5982 |
. . . . 5
|
| 18 | 14, 17 | eqtr4d 2243 |
. . . 4
|
| 19 | 1, 4 | grpinvcl 13495 |
. . . . . 6
|
| 20 | 7, 11, 19 | syl2anc 411 |
. . . . 5
|
| 21 | 1, 2, 4 | grpinvadd 13525 |
. . . . 5
|
| 22 | 7, 8, 20, 21 | syl3anc 1250 |
. . . 4
|
| 23 | 18, 22 | eqtr4d 2243 |
. . 3
|
| 24 | 1, 2, 4, 3 | grpsubval 13493 |
. . . . 5
|
| 25 | 8, 11, 24 | syl2anc 411 |
. . . 4
|
| 26 | 25 | fveq2d 5603 |
. . 3
|
| 27 | 23, 26 | eqtr4d 2243 |
. 2
|
| 28 | 1, 3, 4 | grpinvsub 13529 |
. . 3
|
| 29 | 7, 8, 11, 28 | syl3anc 1250 |
. 2
|
| 30 | 12, 27, 29 | 3eqtrd 2244 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-minusg 13451 df-sbg 13452 df-cmn 13737 df-abl 13738 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |