ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablsub2inv Unicode version

Theorem ablsub2inv 13618
Description: Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015.)
Hypotheses
Ref Expression
ablsub2inv.b  |-  B  =  ( Base `  G
)
ablsub2inv.m  |-  .-  =  ( -g `  G )
ablsub2inv.n  |-  N  =  ( invg `  G )
ablsub2inv.g  |-  ( ph  ->  G  e.  Abel )
ablsub2inv.x  |-  ( ph  ->  X  e.  B )
ablsub2inv.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
ablsub2inv  |-  ( ph  ->  ( ( N `  X )  .-  ( N `  Y )
)  =  ( Y 
.-  X ) )

Proof of Theorem ablsub2inv
StepHypRef Expression
1 ablsub2inv.b . . 3  |-  B  =  ( Base `  G
)
2 eqid 2204 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
3 ablsub2inv.m . . 3  |-  .-  =  ( -g `  G )
4 ablsub2inv.n . . 3  |-  N  =  ( invg `  G )
5 ablsub2inv.g . . . 4  |-  ( ph  ->  G  e.  Abel )
6 ablgrp 13596 . . . 4  |-  ( G  e.  Abel  ->  G  e. 
Grp )
75, 6syl 14 . . 3  |-  ( ph  ->  G  e.  Grp )
8 ablsub2inv.x . . . 4  |-  ( ph  ->  X  e.  B )
91, 4grpinvcl 13351 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
107, 8, 9syl2anc 411 . . 3  |-  ( ph  ->  ( N `  X
)  e.  B )
11 ablsub2inv.y . . 3  |-  ( ph  ->  Y  e.  B )
121, 2, 3, 4, 7, 10, 11grpsubinv 13376 . 2  |-  ( ph  ->  ( ( N `  X )  .-  ( N `  Y )
)  =  ( ( N `  X ) ( +g  `  G
) Y ) )
131, 2ablcom 13610 . . . . . 6  |-  ( ( G  e.  Abel  /\  ( N `  X )  e.  B  /\  Y  e.  B )  ->  (
( N `  X
) ( +g  `  G
) Y )  =  ( Y ( +g  `  G ) ( N `
 X ) ) )
145, 10, 11, 13syl3anc 1249 . . . . 5  |-  ( ph  ->  ( ( N `  X ) ( +g  `  G ) Y )  =  ( Y ( +g  `  G ) ( N `  X
) ) )
151, 4grpinvinv 13370 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  ( N `  Y )
)  =  Y )
167, 11, 15syl2anc 411 . . . . . 6  |-  ( ph  ->  ( N `  ( N `  Y )
)  =  Y )
1716oveq1d 5958 . . . . 5  |-  ( ph  ->  ( ( N `  ( N `  Y ) ) ( +g  `  G
) ( N `  X ) )  =  ( Y ( +g  `  G ) ( N `
 X ) ) )
1814, 17eqtr4d 2240 . . . 4  |-  ( ph  ->  ( ( N `  X ) ( +g  `  G ) Y )  =  ( ( N `
 ( N `  Y ) ) ( +g  `  G ) ( N `  X
) ) )
191, 4grpinvcl 13351 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  Y
)  e.  B )
207, 11, 19syl2anc 411 . . . . 5  |-  ( ph  ->  ( N `  Y
)  e.  B )
211, 2, 4grpinvadd 13381 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  ( N `  Y )  e.  B )  -> 
( N `  ( X ( +g  `  G
) ( N `  Y ) ) )  =  ( ( N `
 ( N `  Y ) ) ( +g  `  G ) ( N `  X
) ) )
227, 8, 20, 21syl3anc 1249 . . . 4  |-  ( ph  ->  ( N `  ( X ( +g  `  G
) ( N `  Y ) ) )  =  ( ( N `
 ( N `  Y ) ) ( +g  `  G ) ( N `  X
) ) )
2318, 22eqtr4d 2240 . . 3  |-  ( ph  ->  ( ( N `  X ) ( +g  `  G ) Y )  =  ( N `  ( X ( +g  `  G
) ( N `  Y ) ) ) )
241, 2, 4, 3grpsubval 13349 . . . . 5  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X ( +g  `  G
) ( N `  Y ) ) )
258, 11, 24syl2anc 411 . . . 4  |-  ( ph  ->  ( X  .-  Y
)  =  ( X ( +g  `  G
) ( N `  Y ) ) )
2625fveq2d 5579 . . 3  |-  ( ph  ->  ( N `  ( X  .-  Y ) )  =  ( N `  ( X ( +g  `  G
) ( N `  Y ) ) ) )
2723, 26eqtr4d 2240 . 2  |-  ( ph  ->  ( ( N `  X ) ( +g  `  G ) Y )  =  ( N `  ( X  .-  Y ) ) )
281, 3, 4grpinvsub 13385 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .-  Y ) )  =  ( Y  .-  X ) )
297, 8, 11, 28syl3anc 1249 . 2  |-  ( ph  ->  ( N `  ( X  .-  Y ) )  =  ( Y  .-  X ) )
3012, 27, 293eqtrd 2241 1  |-  ( ph  ->  ( ( N `  X )  .-  ( N `  Y )
)  =  ( Y 
.-  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   ` cfv 5270  (class class class)co 5943   Basecbs 12803   +g cplusg 12880   Grpcgrp 13303   invgcminusg 13304   -gcsg 13305   Abelcabl 13592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-inn 9036  df-2 9094  df-ndx 12806  df-slot 12807  df-base 12809  df-plusg 12893  df-0g 13061  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-grp 13306  df-minusg 13307  df-sbg 13308  df-cmn 13593  df-abl 13594
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator