ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablsub2inv Unicode version

Theorem ablsub2inv 13762
Description: Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015.)
Hypotheses
Ref Expression
ablsub2inv.b  |-  B  =  ( Base `  G
)
ablsub2inv.m  |-  .-  =  ( -g `  G )
ablsub2inv.n  |-  N  =  ( invg `  G )
ablsub2inv.g  |-  ( ph  ->  G  e.  Abel )
ablsub2inv.x  |-  ( ph  ->  X  e.  B )
ablsub2inv.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
ablsub2inv  |-  ( ph  ->  ( ( N `  X )  .-  ( N `  Y )
)  =  ( Y 
.-  X ) )

Proof of Theorem ablsub2inv
StepHypRef Expression
1 ablsub2inv.b . . 3  |-  B  =  ( Base `  G
)
2 eqid 2207 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
3 ablsub2inv.m . . 3  |-  .-  =  ( -g `  G )
4 ablsub2inv.n . . 3  |-  N  =  ( invg `  G )
5 ablsub2inv.g . . . 4  |-  ( ph  ->  G  e.  Abel )
6 ablgrp 13740 . . . 4  |-  ( G  e.  Abel  ->  G  e. 
Grp )
75, 6syl 14 . . 3  |-  ( ph  ->  G  e.  Grp )
8 ablsub2inv.x . . . 4  |-  ( ph  ->  X  e.  B )
91, 4grpinvcl 13495 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
107, 8, 9syl2anc 411 . . 3  |-  ( ph  ->  ( N `  X
)  e.  B )
11 ablsub2inv.y . . 3  |-  ( ph  ->  Y  e.  B )
121, 2, 3, 4, 7, 10, 11grpsubinv 13520 . 2  |-  ( ph  ->  ( ( N `  X )  .-  ( N `  Y )
)  =  ( ( N `  X ) ( +g  `  G
) Y ) )
131, 2ablcom 13754 . . . . . 6  |-  ( ( G  e.  Abel  /\  ( N `  X )  e.  B  /\  Y  e.  B )  ->  (
( N `  X
) ( +g  `  G
) Y )  =  ( Y ( +g  `  G ) ( N `
 X ) ) )
145, 10, 11, 13syl3anc 1250 . . . . 5  |-  ( ph  ->  ( ( N `  X ) ( +g  `  G ) Y )  =  ( Y ( +g  `  G ) ( N `  X
) ) )
151, 4grpinvinv 13514 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  ( N `  Y )
)  =  Y )
167, 11, 15syl2anc 411 . . . . . 6  |-  ( ph  ->  ( N `  ( N `  Y )
)  =  Y )
1716oveq1d 5982 . . . . 5  |-  ( ph  ->  ( ( N `  ( N `  Y ) ) ( +g  `  G
) ( N `  X ) )  =  ( Y ( +g  `  G ) ( N `
 X ) ) )
1814, 17eqtr4d 2243 . . . 4  |-  ( ph  ->  ( ( N `  X ) ( +g  `  G ) Y )  =  ( ( N `
 ( N `  Y ) ) ( +g  `  G ) ( N `  X
) ) )
191, 4grpinvcl 13495 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  Y
)  e.  B )
207, 11, 19syl2anc 411 . . . . 5  |-  ( ph  ->  ( N `  Y
)  e.  B )
211, 2, 4grpinvadd 13525 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  ( N `  Y )  e.  B )  -> 
( N `  ( X ( +g  `  G
) ( N `  Y ) ) )  =  ( ( N `
 ( N `  Y ) ) ( +g  `  G ) ( N `  X
) ) )
227, 8, 20, 21syl3anc 1250 . . . 4  |-  ( ph  ->  ( N `  ( X ( +g  `  G
) ( N `  Y ) ) )  =  ( ( N `
 ( N `  Y ) ) ( +g  `  G ) ( N `  X
) ) )
2318, 22eqtr4d 2243 . . 3  |-  ( ph  ->  ( ( N `  X ) ( +g  `  G ) Y )  =  ( N `  ( X ( +g  `  G
) ( N `  Y ) ) ) )
241, 2, 4, 3grpsubval 13493 . . . . 5  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X ( +g  `  G
) ( N `  Y ) ) )
258, 11, 24syl2anc 411 . . . 4  |-  ( ph  ->  ( X  .-  Y
)  =  ( X ( +g  `  G
) ( N `  Y ) ) )
2625fveq2d 5603 . . 3  |-  ( ph  ->  ( N `  ( X  .-  Y ) )  =  ( N `  ( X ( +g  `  G
) ( N `  Y ) ) ) )
2723, 26eqtr4d 2243 . 2  |-  ( ph  ->  ( ( N `  X ) ( +g  `  G ) Y )  =  ( N `  ( X  .-  Y ) ) )
281, 3, 4grpinvsub 13529 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .-  Y ) )  =  ( Y  .-  X ) )
297, 8, 11, 28syl3anc 1250 . 2  |-  ( ph  ->  ( N `  ( X  .-  Y ) )  =  ( Y  .-  X ) )
3012, 27, 293eqtrd 2244 1  |-  ( ph  ->  ( ( N `  X )  .-  ( N `  Y )
)  =  ( Y 
.-  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   Grpcgrp 13447   invgcminusg 13448   -gcsg 13449   Abelcabl 13736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-sbg 13452  df-cmn 13737  df-abl 13738
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator