ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablsub2inv Unicode version

Theorem ablsub2inv 13114
Description: Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015.)
Hypotheses
Ref Expression
ablsub2inv.b  |-  B  =  ( Base `  G
)
ablsub2inv.m  |-  .-  =  ( -g `  G )
ablsub2inv.n  |-  N  =  ( invg `  G )
ablsub2inv.g  |-  ( ph  ->  G  e.  Abel )
ablsub2inv.x  |-  ( ph  ->  X  e.  B )
ablsub2inv.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
ablsub2inv  |-  ( ph  ->  ( ( N `  X )  .-  ( N `  Y )
)  =  ( Y 
.-  X ) )

Proof of Theorem ablsub2inv
StepHypRef Expression
1 ablsub2inv.b . . 3  |-  B  =  ( Base `  G
)
2 eqid 2177 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
3 ablsub2inv.m . . 3  |-  .-  =  ( -g `  G )
4 ablsub2inv.n . . 3  |-  N  =  ( invg `  G )
5 ablsub2inv.g . . . 4  |-  ( ph  ->  G  e.  Abel )
6 ablgrp 13093 . . . 4  |-  ( G  e.  Abel  ->  G  e. 
Grp )
75, 6syl 14 . . 3  |-  ( ph  ->  G  e.  Grp )
8 ablsub2inv.x . . . 4  |-  ( ph  ->  X  e.  B )
91, 4grpinvcl 12921 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
107, 8, 9syl2anc 411 . . 3  |-  ( ph  ->  ( N `  X
)  e.  B )
11 ablsub2inv.y . . 3  |-  ( ph  ->  Y  e.  B )
121, 2, 3, 4, 7, 10, 11grpsubinv 12943 . 2  |-  ( ph  ->  ( ( N `  X )  .-  ( N `  Y )
)  =  ( ( N `  X ) ( +g  `  G
) Y ) )
131, 2ablcom 13106 . . . . . 6  |-  ( ( G  e.  Abel  /\  ( N `  X )  e.  B  /\  Y  e.  B )  ->  (
( N `  X
) ( +g  `  G
) Y )  =  ( Y ( +g  `  G ) ( N `
 X ) ) )
145, 10, 11, 13syl3anc 1238 . . . . 5  |-  ( ph  ->  ( ( N `  X ) ( +g  `  G ) Y )  =  ( Y ( +g  `  G ) ( N `  X
) ) )
151, 4grpinvinv 12937 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  ( N `  Y )
)  =  Y )
167, 11, 15syl2anc 411 . . . . . 6  |-  ( ph  ->  ( N `  ( N `  Y )
)  =  Y )
1716oveq1d 5890 . . . . 5  |-  ( ph  ->  ( ( N `  ( N `  Y ) ) ( +g  `  G
) ( N `  X ) )  =  ( Y ( +g  `  G ) ( N `
 X ) ) )
1814, 17eqtr4d 2213 . . . 4  |-  ( ph  ->  ( ( N `  X ) ( +g  `  G ) Y )  =  ( ( N `
 ( N `  Y ) ) ( +g  `  G ) ( N `  X
) ) )
191, 4grpinvcl 12921 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  Y
)  e.  B )
207, 11, 19syl2anc 411 . . . . 5  |-  ( ph  ->  ( N `  Y
)  e.  B )
211, 2, 4grpinvadd 12948 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  ( N `  Y )  e.  B )  -> 
( N `  ( X ( +g  `  G
) ( N `  Y ) ) )  =  ( ( N `
 ( N `  Y ) ) ( +g  `  G ) ( N `  X
) ) )
227, 8, 20, 21syl3anc 1238 . . . 4  |-  ( ph  ->  ( N `  ( X ( +g  `  G
) ( N `  Y ) ) )  =  ( ( N `
 ( N `  Y ) ) ( +g  `  G ) ( N `  X
) ) )
2318, 22eqtr4d 2213 . . 3  |-  ( ph  ->  ( ( N `  X ) ( +g  `  G ) Y )  =  ( N `  ( X ( +g  `  G
) ( N `  Y ) ) ) )
241, 2, 4, 3grpsubval 12919 . . . . 5  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  =  ( X ( +g  `  G
) ( N `  Y ) ) )
258, 11, 24syl2anc 411 . . . 4  |-  ( ph  ->  ( X  .-  Y
)  =  ( X ( +g  `  G
) ( N `  Y ) ) )
2625fveq2d 5520 . . 3  |-  ( ph  ->  ( N `  ( X  .-  Y ) )  =  ( N `  ( X ( +g  `  G
) ( N `  Y ) ) ) )
2723, 26eqtr4d 2213 . 2  |-  ( ph  ->  ( ( N `  X ) ( +g  `  G ) Y )  =  ( N `  ( X  .-  Y ) ) )
281, 3, 4grpinvsub 12952 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .-  Y ) )  =  ( Y  .-  X ) )
297, 8, 11, 28syl3anc 1238 . 2  |-  ( ph  ->  ( N `  ( X  .-  Y ) )  =  ( Y  .-  X ) )
3012, 27, 293eqtrd 2214 1  |-  ( ph  ->  ( ( N `  X )  .-  ( N `  Y )
)  =  ( Y 
.-  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   ` cfv 5217  (class class class)co 5875   Basecbs 12462   +g cplusg 12536   Grpcgrp 12877   invgcminusg 12878   -gcsg 12879   Abelcabl 13089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-inn 8920  df-2 8978  df-ndx 12465  df-slot 12466  df-base 12468  df-plusg 12549  df-0g 12707  df-mgm 12775  df-sgrp 12808  df-mnd 12818  df-grp 12880  df-minusg 12881  df-sbg 12882  df-cmn 13090  df-abl 13091
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator