ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablinvadd Unicode version

Theorem ablinvadd 13646
Description: The inverse of an Abelian group operation. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
ablinvadd.b  |-  B  =  ( Base `  G
)
ablinvadd.p  |-  .+  =  ( +g  `  G )
ablinvadd.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
ablinvadd  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .+  Y ) )  =  ( ( N `  X )  .+  ( N `  Y )
) )

Proof of Theorem ablinvadd
StepHypRef Expression
1 ablgrp 13625 . . 3  |-  ( G  e.  Abel  ->  G  e. 
Grp )
2 ablinvadd.b . . . 4  |-  B  =  ( Base `  G
)
3 ablinvadd.p . . . 4  |-  .+  =  ( +g  `  G )
4 ablinvadd.n . . . 4  |-  N  =  ( invg `  G )
52, 3, 4grpinvadd 13410 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .+  Y ) )  =  ( ( N `
 Y )  .+  ( N `  X ) ) )
61, 5syl3an1 1283 . 2  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .+  Y ) )  =  ( ( N `  Y )  .+  ( N `  X )
) )
7 simp1 1000 . . 3  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  G  e.  Abel )
813ad2ant1 1021 . . . 4  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  G  e.  Grp )
9 simp2 1001 . . . 4  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
102, 4grpinvcl 13380 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
118, 9, 10syl2anc 411 . . 3  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  X )  e.  B )
12 simp3 1002 . . . 4  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
132, 4grpinvcl 13380 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  Y
)  e.  B )
148, 12, 13syl2anc 411 . . 3  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  Y )  e.  B )
152, 3ablcom 13639 . . 3  |-  ( ( G  e.  Abel  /\  ( N `  X )  e.  B  /\  ( N `  Y )  e.  B )  ->  (
( N `  X
)  .+  ( N `  Y ) )  =  ( ( N `  Y )  .+  ( N `  X )
) )
167, 11, 14, 15syl3anc 1250 . 2  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  (
( N `  X
)  .+  ( N `  Y ) )  =  ( ( N `  Y )  .+  ( N `  X )
) )
176, 16eqtr4d 2241 1  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .+  Y ) )  =  ( ( N `  X )  .+  ( N `  Y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2176   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   Grpcgrp 13332   invgcminusg 13333   Abelcabl 13621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-cmn 13622  df-abl 13623
This theorem is referenced by:  ablsub4  13649  invghm  13665  lmodnegadd  14098
  Copyright terms: Public domain W3C validator