ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablinvadd Unicode version

Theorem ablinvadd 13118
Description: The inverse of an Abelian group operation. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
ablinvadd.b  |-  B  =  ( Base `  G
)
ablinvadd.p  |-  .+  =  ( +g  `  G )
ablinvadd.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
ablinvadd  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .+  Y ) )  =  ( ( N `  X )  .+  ( N `  Y )
) )

Proof of Theorem ablinvadd
StepHypRef Expression
1 ablgrp 13098 . . 3  |-  ( G  e.  Abel  ->  G  e. 
Grp )
2 ablinvadd.b . . . 4  |-  B  =  ( Base `  G
)
3 ablinvadd.p . . . 4  |-  .+  =  ( +g  `  G )
4 ablinvadd.n . . . 4  |-  N  =  ( invg `  G )
52, 3, 4grpinvadd 12953 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .+  Y ) )  =  ( ( N `
 Y )  .+  ( N `  X ) ) )
61, 5syl3an1 1271 . 2  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .+  Y ) )  =  ( ( N `  Y )  .+  ( N `  X )
) )
7 simp1 997 . . 3  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  G  e.  Abel )
813ad2ant1 1018 . . . 4  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  G  e.  Grp )
9 simp2 998 . . . 4  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
102, 4grpinvcl 12926 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
118, 9, 10syl2anc 411 . . 3  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  X )  e.  B )
12 simp3 999 . . . 4  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
132, 4grpinvcl 12926 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  Y
)  e.  B )
148, 12, 13syl2anc 411 . . 3  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  Y )  e.  B )
152, 3ablcom 13111 . . 3  |-  ( ( G  e.  Abel  /\  ( N `  X )  e.  B  /\  ( N `  Y )  e.  B )  ->  (
( N `  X
)  .+  ( N `  Y ) )  =  ( ( N `  Y )  .+  ( N `  X )
) )
167, 11, 14, 15syl3anc 1238 . 2  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  (
( N `  X
)  .+  ( N `  Y ) )  =  ( ( N `  Y )  .+  ( N `  X )
) )
176, 16eqtr4d 2213 1  |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .+  Y ) )  =  ( ( N `  X )  .+  ( N `  Y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    = wceq 1353    e. wcel 2148   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538   Grpcgrp 12882   invgcminusg 12883   Abelcabl 13094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-cmn 13095  df-abl 13096
This theorem is referenced by:  ablsub4  13121  lmodnegadd  13431
  Copyright terms: Public domain W3C validator