ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablsubsub4 Unicode version

Theorem ablsubsub4 13122
Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
ablsubadd.b  |-  B  =  ( Base `  G
)
ablsubadd.p  |-  .+  =  ( +g  `  G )
ablsubadd.m  |-  .-  =  ( -g `  G )
ablsubsub.g  |-  ( ph  ->  G  e.  Abel )
ablsubsub.x  |-  ( ph  ->  X  e.  B )
ablsubsub.y  |-  ( ph  ->  Y  e.  B )
ablsubsub.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
ablsubsub4  |-  ( ph  ->  ( ( X  .-  Y )  .-  Z
)  =  ( X 
.-  ( Y  .+  Z ) ) )

Proof of Theorem ablsubsub4
StepHypRef Expression
1 ablsubsub.g . . . . 5  |-  ( ph  ->  G  e.  Abel )
2 ablgrp 13093 . . . . 5  |-  ( G  e.  Abel  ->  G  e. 
Grp )
31, 2syl 14 . . . 4  |-  ( ph  ->  G  e.  Grp )
4 ablsubsub.x . . . 4  |-  ( ph  ->  X  e.  B )
5 ablsubsub.y . . . 4  |-  ( ph  ->  Y  e.  B )
6 ablsubadd.b . . . . 5  |-  B  =  ( Base `  G
)
7 ablsubadd.m . . . . 5  |-  .-  =  ( -g `  G )
86, 7grpsubcl 12950 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  e.  B )
93, 4, 5, 8syl3anc 1238 . . 3  |-  ( ph  ->  ( X  .-  Y
)  e.  B )
10 ablsubsub.z . . 3  |-  ( ph  ->  Z  e.  B )
11 ablsubadd.p . . . 4  |-  .+  =  ( +g  `  G )
12 eqid 2177 . . . 4  |-  ( invg `  G )  =  ( invg `  G )
136, 11, 12, 7grpsubval 12919 . . 3  |-  ( ( ( X  .-  Y
)  e.  B  /\  Z  e.  B )  ->  ( ( X  .-  Y )  .-  Z
)  =  ( ( X  .-  Y ) 
.+  ( ( invg `  G ) `
 Z ) ) )
149, 10, 13syl2anc 411 . 2  |-  ( ph  ->  ( ( X  .-  Y )  .-  Z
)  =  ( ( X  .-  Y ) 
.+  ( ( invg `  G ) `
 Z ) ) )
156, 12grpinvcl 12921 . . . 4  |-  ( ( G  e.  Grp  /\  Z  e.  B )  ->  ( ( invg `  G ) `  Z
)  e.  B )
163, 10, 15syl2anc 411 . . 3  |-  ( ph  ->  ( ( invg `  G ) `  Z
)  e.  B )
176, 11, 7, 1, 4, 5, 16ablsubsub 13121 . 2  |-  ( ph  ->  ( X  .-  ( Y  .-  ( ( invg `  G ) `
 Z ) ) )  =  ( ( X  .-  Y ) 
.+  ( ( invg `  G ) `
 Z ) ) )
186, 11, 7, 12, 3, 5, 10grpsubinv 12943 . . 3  |-  ( ph  ->  ( Y  .-  (
( invg `  G ) `  Z
) )  =  ( Y  .+  Z ) )
1918oveq2d 5891 . 2  |-  ( ph  ->  ( X  .-  ( Y  .-  ( ( invg `  G ) `
 Z ) ) )  =  ( X 
.-  ( Y  .+  Z ) ) )
2014, 17, 193eqtr2d 2216 1  |-  ( ph  ->  ( ( X  .-  Y )  .-  Z
)  =  ( X 
.-  ( Y  .+  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   ` cfv 5217  (class class class)co 5875   Basecbs 12462   +g cplusg 12536   Grpcgrp 12877   invgcminusg 12878   -gcsg 12879   Abelcabl 13089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-inn 8920  df-2 8978  df-ndx 12465  df-slot 12466  df-base 12468  df-plusg 12549  df-0g 12707  df-mgm 12775  df-sgrp 12808  df-mnd 12818  df-grp 12880  df-minusg 12881  df-sbg 12882  df-cmn 13090  df-abl 13091
This theorem is referenced by:  ablsub32  13125  ablnnncan  13126
  Copyright terms: Public domain W3C validator