Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abladdsub4 | Unicode version |
Description: Abelian group addition/subtraction law. (Contributed by NM, 31-Mar-2014.) |
Ref | Expression |
---|---|
ablsubadd.b | |
ablsubadd.p | |
ablsubadd.m |
Ref | Expression |
---|---|
abladdsub4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablgrp 12889 | . . . 4 | |
2 | 1 | 3ad2ant1 1018 | . . 3 |
3 | simp2l 1023 | . . . 4 | |
4 | simp2r 1024 | . . . 4 | |
5 | ablsubadd.b | . . . . 5 | |
6 | ablsubadd.p | . . . . 5 | |
7 | 5, 6 | grpcl 12746 | . . . 4 |
8 | 2, 3, 4, 7 | syl3anc 1238 | . . 3 |
9 | simp3l 1025 | . . . 4 | |
10 | simp3r 1026 | . . . 4 | |
11 | 5, 6 | grpcl 12746 | . . . 4 |
12 | 2, 9, 10, 11 | syl3anc 1238 | . . 3 |
13 | 5, 6 | grpcl 12746 | . . . 4 |
14 | 2, 9, 4, 13 | syl3anc 1238 | . . 3 |
15 | ablsubadd.m | . . . 4 | |
16 | 5, 15 | grpsubrcan 12810 | . . 3 |
17 | 2, 8, 12, 14, 16 | syl13anc 1240 | . 2 |
18 | simp1 997 | . . . . 5 | |
19 | 5, 6, 15 | ablsub4 12912 | . . . . 5 |
20 | 18, 3, 4, 9, 4, 19 | syl122anc 1247 | . . . 4 |
21 | eqid 2175 | . . . . . . 7 | |
22 | 5, 21, 15 | grpsubid 12813 | . . . . . 6 |
23 | 2, 4, 22 | syl2anc 411 | . . . . 5 |
24 | 23 | oveq2d 5881 | . . . 4 |
25 | 5, 15 | grpsubcl 12809 | . . . . . 6 |
26 | 2, 3, 9, 25 | syl3anc 1238 | . . . . 5 |
27 | 5, 6, 21 | grprid 12767 | . . . . 5 |
28 | 2, 26, 27 | syl2anc 411 | . . . 4 |
29 | 20, 24, 28 | 3eqtrd 2212 | . . 3 |
30 | 5, 6, 15 | ablsub4 12912 | . . . . 5 |
31 | 18, 9, 10, 9, 4, 30 | syl122anc 1247 | . . . 4 |
32 | 5, 21, 15 | grpsubid 12813 | . . . . . 6 |
33 | 2, 9, 32 | syl2anc 411 | . . . . 5 |
34 | 33 | oveq1d 5880 | . . . 4 |
35 | 5, 15 | grpsubcl 12809 | . . . . . 6 |
36 | 2, 10, 4, 35 | syl3anc 1238 | . . . . 5 |
37 | 5, 6, 21 | grplid 12766 | . . . . 5 |
38 | 2, 36, 37 | syl2anc 411 | . . . 4 |
39 | 31, 34, 38 | 3eqtrd 2212 | . . 3 |
40 | 29, 39 | eqeq12d 2190 | . 2 |
41 | 17, 40 | bitr3d 190 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 w3a 978 wceq 1353 wcel 2146 cfv 5208 (class class class)co 5865 cbs 12428 cplusg 12492 c0g 12626 cgrp 12738 csg 12740 cabl 12885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-inn 8891 df-2 8949 df-ndx 12431 df-slot 12432 df-base 12434 df-plusg 12505 df-0g 12628 df-mgm 12640 df-sgrp 12673 df-mnd 12683 df-grp 12741 df-minusg 12742 df-sbg 12743 df-cmn 12886 df-abl 12887 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |