ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abladdsub4 Unicode version

Theorem abladdsub4 13851
Description: Abelian group addition/subtraction law. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
ablsubadd.b  |-  B  =  ( Base `  G
)
ablsubadd.p  |-  .+  =  ( +g  `  G )
ablsubadd.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
abladdsub4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  =  ( Z 
.+  W )  <->  ( X  .-  Z )  =  ( W  .-  Y ) ) )

Proof of Theorem abladdsub4
StepHypRef Expression
1 ablgrp 13826 . . . 4  |-  ( G  e.  Abel  ->  G  e. 
Grp )
213ad2ant1 1042 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  G  e.  Grp )
3 simp2l 1047 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  X  e.  B )
4 simp2r 1048 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  Y  e.  B )
5 ablsubadd.b . . . . 5  |-  B  =  ( Base `  G
)
6 ablsubadd.p . . . . 5  |-  .+  =  ( +g  `  G )
75, 6grpcl 13541 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )
82, 3, 4, 7syl3anc 1271 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( X  .+  Y )  e.  B )
9 simp3l 1049 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  Z  e.  B )
10 simp3r 1050 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  W  e.  B )
115, 6grpcl 13541 . . . 4  |-  ( ( G  e.  Grp  /\  Z  e.  B  /\  W  e.  B )  ->  ( Z  .+  W
)  e.  B )
122, 9, 10, 11syl3anc 1271 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( Z  .+  W )  e.  B )
135, 6grpcl 13541 . . . 4  |-  ( ( G  e.  Grp  /\  Z  e.  B  /\  Y  e.  B )  ->  ( Z  .+  Y
)  e.  B )
142, 9, 4, 13syl3anc 1271 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( Z  .+  Y )  e.  B )
15 ablsubadd.m . . . 4  |-  .-  =  ( -g `  G )
165, 15grpsubrcan 13614 . . 3  |-  ( ( G  e.  Grp  /\  ( ( X  .+  Y )  e.  B  /\  ( Z  .+  W
)  e.  B  /\  ( Z  .+  Y )  e.  B ) )  ->  ( ( ( X  .+  Y ) 
.-  ( Z  .+  Y ) )  =  ( ( Z  .+  W )  .-  ( Z  .+  Y ) )  <-> 
( X  .+  Y
)  =  ( Z 
.+  W ) ) )
172, 8, 12, 14, 16syl13anc 1273 . 2  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( ( X  .+  Y )  .-  ( Z  .+  Y ) )  =  ( ( Z 
.+  W )  .-  ( Z  .+  Y ) )  <->  ( X  .+  Y )  =  ( Z  .+  W ) ) )
18 simp1 1021 . . . . 5  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  G  e.  Abel )
195, 6, 15ablsub4 13850 . . . . 5  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  Y  e.  B
) )  ->  (
( X  .+  Y
)  .-  ( Z  .+  Y ) )  =  ( ( X  .-  Z )  .+  ( Y  .-  Y ) ) )
2018, 3, 4, 9, 4, 19syl122anc 1280 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .-  ( Z  .+  Y ) )  =  ( ( X  .-  Z )  .+  ( Y  .-  Y ) ) )
21 eqid 2229 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
225, 21, 15grpsubid 13617 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( Y  .-  Y
)  =  ( 0g
`  G ) )
232, 4, 22syl2anc 411 . . . . 5  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( Y  .-  Y )  =  ( 0g `  G
) )
2423oveq2d 6017 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .-  Z
)  .+  ( Y  .-  Y ) )  =  ( ( X  .-  Z )  .+  ( 0g `  G ) ) )
255, 15grpsubcl 13613 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .-  Z
)  e.  B )
262, 3, 9, 25syl3anc 1271 . . . . 5  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( X  .-  Z )  e.  B )
275, 6, 21grprid 13565 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  .-  Z )  e.  B )  -> 
( ( X  .-  Z )  .+  ( 0g `  G ) )  =  ( X  .-  Z ) )
282, 26, 27syl2anc 411 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .-  Z
)  .+  ( 0g `  G ) )  =  ( X  .-  Z
) )
2920, 24, 283eqtrd 2266 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .-  ( Z  .+  Y ) )  =  ( X  .-  Z
) )
305, 6, 15ablsub4 13850 . . . . 5  |-  ( ( G  e.  Abel  /\  ( Z  e.  B  /\  W  e.  B )  /\  ( Z  e.  B  /\  Y  e.  B
) )  ->  (
( Z  .+  W
)  .-  ( Z  .+  Y ) )  =  ( ( Z  .-  Z )  .+  ( W  .-  Y ) ) )
3118, 9, 10, 9, 4, 30syl122anc 1280 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( Z  .+  W
)  .-  ( Z  .+  Y ) )  =  ( ( Z  .-  Z )  .+  ( W  .-  Y ) ) )
325, 21, 15grpsubid 13617 . . . . . 6  |-  ( ( G  e.  Grp  /\  Z  e.  B )  ->  ( Z  .-  Z
)  =  ( 0g
`  G ) )
332, 9, 32syl2anc 411 . . . . 5  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( Z  .-  Z )  =  ( 0g `  G
) )
3433oveq1d 6016 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( Z  .-  Z
)  .+  ( W  .-  Y ) )  =  ( ( 0g `  G )  .+  ( W  .-  Y ) ) )
355, 15grpsubcl 13613 . . . . . 6  |-  ( ( G  e.  Grp  /\  W  e.  B  /\  Y  e.  B )  ->  ( W  .-  Y
)  e.  B )
362, 10, 4, 35syl3anc 1271 . . . . 5  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( W  .-  Y )  e.  B )
375, 6, 21grplid 13564 . . . . 5  |-  ( ( G  e.  Grp  /\  ( W  .-  Y )  e.  B )  -> 
( ( 0g `  G )  .+  ( W  .-  Y ) )  =  ( W  .-  Y ) )
382, 36, 37syl2anc 411 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( 0g `  G
)  .+  ( W  .-  Y ) )  =  ( W  .-  Y
) )
3931, 34, 383eqtrd 2266 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( Z  .+  W
)  .-  ( Z  .+  Y ) )  =  ( W  .-  Y
) )
4029, 39eqeq12d 2244 . 2  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( ( X  .+  Y )  .-  ( Z  .+  Y ) )  =  ( ( Z 
.+  W )  .-  ( Z  .+  Y ) )  <->  ( X  .-  Z )  =  ( W  .-  Y ) ) )
4117, 40bitr3d 190 1  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  =  ( Z 
.+  W )  <->  ( X  .-  Z )  =  ( W  .-  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   0gc0g 13289   Grpcgrp 13533   -gcsg 13535   Abelcabl 13822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-sbg 13538  df-cmn 13823  df-abl 13824
This theorem is referenced by:  lmodvaddsub4  14303
  Copyright terms: Public domain W3C validator