ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablsubsub Unicode version

Theorem ablsubsub 13388
Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
ablsubadd.b  |-  B  =  ( Base `  G
)
ablsubadd.p  |-  .+  =  ( +g  `  G )
ablsubadd.m  |-  .-  =  ( -g `  G )
ablsubsub.g  |-  ( ph  ->  G  e.  Abel )
ablsubsub.x  |-  ( ph  ->  X  e.  B )
ablsubsub.y  |-  ( ph  ->  Y  e.  B )
ablsubsub.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
ablsubsub  |-  ( ph  ->  ( X  .-  ( Y  .-  Z ) )  =  ( ( X 
.-  Y )  .+  Z ) )

Proof of Theorem ablsubsub
StepHypRef Expression
1 ablsubsub.g . . . 4  |-  ( ph  ->  G  e.  Abel )
2 ablgrp 13359 . . . 4  |-  ( G  e.  Abel  ->  G  e. 
Grp )
31, 2syl 14 . . 3  |-  ( ph  ->  G  e.  Grp )
4 ablsubsub.x . . 3  |-  ( ph  ->  X  e.  B )
5 ablsubsub.y . . 3  |-  ( ph  ->  Y  e.  B )
6 ablsubsub.z . . 3  |-  ( ph  ->  Z  e.  B )
7 ablsubadd.b . . . 4  |-  B  =  ( Base `  G
)
8 ablsubadd.p . . . 4  |-  .+  =  ( +g  `  G )
9 ablsubadd.m . . . 4  |-  .-  =  ( -g `  G )
107, 8, 9grpsubsub 13161 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .-  ( Y  .-  Z ) )  =  ( X  .+  ( Z  .-  Y ) ) )
113, 4, 5, 6, 10syl13anc 1251 . 2  |-  ( ph  ->  ( X  .-  ( Y  .-  Z ) )  =  ( X  .+  ( Z  .-  Y ) ) )
127, 8, 9grpaddsubass 13162 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Z  e.  B  /\  Y  e.  B
) )  ->  (
( X  .+  Z
)  .-  Y )  =  ( X  .+  ( Z  .-  Y ) ) )
133, 4, 6, 5, 12syl13anc 1251 . 2  |-  ( ph  ->  ( ( X  .+  Z )  .-  Y
)  =  ( X 
.+  ( Z  .-  Y ) ) )
147, 8, 9abladdsub 13385 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Z  e.  B  /\  Y  e.  B )
)  ->  ( ( X  .+  Z )  .-  Y )  =  ( ( X  .-  Y
)  .+  Z )
)
151, 4, 6, 5, 14syl13anc 1251 . 2  |-  ( ph  ->  ( ( X  .+  Z )  .-  Y
)  =  ( ( X  .-  Y ) 
.+  Z ) )
1611, 13, 153eqtr2d 2232 1  |-  ( ph  ->  ( X  .-  ( Y  .-  Z ) )  =  ( ( X 
.-  Y )  .+  Z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   Grpcgrp 13072   -gcsg 13074   Abelcabl 13355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-cmn 13356  df-abl 13357
This theorem is referenced by:  ablsubsub4  13389  ablnncan  13391
  Copyright terms: Public domain W3C validator