ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablnncan Unicode version

Theorem ablnncan 13451
Description: Cancellation law for group subtraction. (nncan 8255 analog.) (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
ablnncan.b  |-  B  =  ( Base `  G
)
ablnncan.m  |-  .-  =  ( -g `  G )
ablnncan.g  |-  ( ph  ->  G  e.  Abel )
ablnncan.x  |-  ( ph  ->  X  e.  B )
ablnncan.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
ablnncan  |-  ( ph  ->  ( X  .-  ( X  .-  Y ) )  =  Y )

Proof of Theorem ablnncan
StepHypRef Expression
1 ablnncan.b . . 3  |-  B  =  ( Base `  G
)
2 eqid 2196 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
3 ablnncan.m . . 3  |-  .-  =  ( -g `  G )
4 ablnncan.g . . 3  |-  ( ph  ->  G  e.  Abel )
5 ablnncan.x . . 3  |-  ( ph  ->  X  e.  B )
6 ablnncan.y . . 3  |-  ( ph  ->  Y  e.  B )
71, 2, 3, 4, 5, 5, 6ablsubsub 13448 . 2  |-  ( ph  ->  ( X  .-  ( X  .-  Y ) )  =  ( ( X 
.-  X ) ( +g  `  G ) Y ) )
8 ablgrp 13419 . . . . 5  |-  ( G  e.  Abel  ->  G  e. 
Grp )
94, 8syl 14 . . . 4  |-  ( ph  ->  G  e.  Grp )
10 eqid 2196 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
111, 10, 3grpsubid 13216 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .-  X
)  =  ( 0g
`  G ) )
129, 5, 11syl2anc 411 . . 3  |-  ( ph  ->  ( X  .-  X
)  =  ( 0g
`  G ) )
1312oveq1d 5937 . 2  |-  ( ph  ->  ( ( X  .-  X ) ( +g  `  G ) Y )  =  ( ( 0g
`  G ) ( +g  `  G ) Y ) )
141, 2, 10grplid 13163 . . 3  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( ( 0g `  G ) ( +g  `  G ) Y )  =  Y )
159, 6, 14syl2anc 411 . 2  |-  ( ph  ->  ( ( 0g `  G ) ( +g  `  G ) Y )  =  Y )
167, 13, 153eqtrd 2233 1  |-  ( ph  ->  ( X  .-  ( X  .-  Y ) )  =  Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   0gc0g 12927   Grpcgrp 13132   -gcsg 13134   Abelcabl 13415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-cmn 13416  df-abl 13417
This theorem is referenced by:  ablnnncan1  13454
  Copyright terms: Public domain W3C validator