ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspsn Unicode version

Theorem lspsn 13507
Description: Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsn.f  |-  F  =  (Scalar `  W )
lspsn.k  |-  K  =  ( Base `  F
)
lspsn.v  |-  V  =  ( Base `  W
)
lspsn.t  |-  .x.  =  ( .s `  W )
lspsn.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsn  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  =  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) } )
Distinct variable groups:    k, F    v,
k, K    k, N, v    k, V, v    k, W, v    .x. , k, v   
k, X, v
Allowed substitution hint:    F( v)

Proof of Theorem lspsn
StepHypRef Expression
1 eqid 2177 . . 3  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
2 lspsn.n . . 3  |-  N  =  ( LSpan `  W )
3 simpl 109 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  W  e.  LMod )
4 lspsn.v . . . 4  |-  V  =  ( Base `  W
)
5 lspsn.f . . . 4  |-  F  =  (Scalar `  W )
6 lspsn.t . . . 4  |-  .x.  =  ( .s `  W )
7 lspsn.k . . . 4  |-  K  =  ( Base `  F
)
84, 5, 6, 7, 1lss1d 13475 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  e.  ( LSubSp `  W ) )
9 eqid 2177 . . . . . 6  |-  ( 1r
`  F )  =  ( 1r `  F
)
105, 7, 9lmod1cl 13410 . . . . 5  |-  ( W  e.  LMod  ->  ( 1r
`  F )  e.  K )
114, 5, 6, 9lmodvs1 13411 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 1r `  F
)  .x.  X )  =  X )
1211eqcomd 2183 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  =  ( ( 1r
`  F )  .x.  X ) )
13 oveq1 5884 . . . . . 6  |-  ( k  =  ( 1r `  F )  ->  (
k  .x.  X )  =  ( ( 1r
`  F )  .x.  X ) )
1413rspceeqv 2861 . . . . 5  |-  ( ( ( 1r `  F
)  e.  K  /\  X  =  ( ( 1r `  F )  .x.  X ) )  ->  E. k  e.  K  X  =  ( k  .x.  X ) )
1510, 12, 14syl2an2r 595 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  E. k  e.  K  X  =  ( k  .x.  X
) )
16 eqeq1 2184 . . . . . . 7  |-  ( v  =  X  ->  (
v  =  ( k 
.x.  X )  <->  X  =  ( k  .x.  X
) ) )
1716rexbidv 2478 . . . . . 6  |-  ( v  =  X  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  X  =  ( k  .x.  X
) ) )
1817elabg 2885 . . . . 5  |-  ( X  e.  V  ->  ( X  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  X  =  ( k  .x.  X
) ) )
1918adantl 277 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( X  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  X  =  ( k  .x.  X
) ) )
2015, 19mpbird 167 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )
211, 2, 3, 8, 20lspsnel5a 13501 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  C_  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )
223adantr 276 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  W  e.  LMod )
234, 1, 2lspsncl 13484 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  (
LSubSp `  W ) )
2423adantr 276 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( N `  { X } )  e.  ( LSubSp `  W
) )
25 simpr 110 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  k  e.  K )
264, 2lspsnid 13498 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
2726adantr 276 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  X  e.  ( N `  { X } ) )
285, 6, 7, 1lssvscl 13467 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  ( N `  { X } )  e.  (
LSubSp `  W ) )  /\  ( k  e.  K  /\  X  e.  ( N `  { X } ) ) )  ->  ( k  .x.  X )  e.  ( N `  { X } ) )
2922, 24, 25, 27, 28syl22anc 1239 . . . . 5  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( k  .x.  X )  e.  ( N `  { X } ) )
30 eleq1a 2249 . . . . 5  |-  ( ( k  .x.  X )  e.  ( N `  { X } )  -> 
( v  =  ( k  .x.  X )  ->  v  e.  ( N `  { X } ) ) )
3129, 30syl 14 . . . 4  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( v  =  ( k  .x.  X )  ->  v  e.  ( N `  { X } ) ) )
3231rexlimdva 2594 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  ->  v  e.  ( N `  { X } ) ) )
3332abssdv 3231 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  C_  ( N `  { X } ) )
3421, 33eqssd 3174 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  =  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   {cab 2163   E.wrex 2456   {csn 3594   ` cfv 5218  (class class class)co 5877   Basecbs 12464  Scalarcsca 12541   .scvsca 12542   1rcur 13147   LModclmod 13382   LSubSpclss 13447   LSpanclspn 13478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-plusg 12551  df-mulr 12552  df-sca 12554  df-vsca 12555  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-sbg 12887  df-mgp 13136  df-ur 13148  df-ring 13186  df-lmod 13384  df-lssm 13448  df-lsp 13479
This theorem is referenced by:  lspsnel  13508
  Copyright terms: Public domain W3C validator