| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lspsn | Unicode version | ||
| Description: Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspsn.f |
|
| lspsn.k |
|
| lspsn.v |
|
| lspsn.t |
|
| lspsn.n |
|
| Ref | Expression |
|---|---|
| lspsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 |
. . 3
| |
| 2 | lspsn.n |
. . 3
| |
| 3 | simpl 109 |
. . 3
| |
| 4 | lspsn.v |
. . . 4
| |
| 5 | lspsn.f |
. . . 4
| |
| 6 | lspsn.t |
. . . 4
| |
| 7 | lspsn.k |
. . . 4
| |
| 8 | 4, 5, 6, 7, 1 | lss1d 14087 |
. . 3
|
| 9 | eqid 2204 |
. . . . . 6
| |
| 10 | 5, 7, 9 | lmod1cl 14019 |
. . . . 5
|
| 11 | 4, 5, 6, 9 | lmodvs1 14020 |
. . . . . 6
|
| 12 | 11 | eqcomd 2210 |
. . . . 5
|
| 13 | oveq1 5950 |
. . . . . 6
| |
| 14 | 13 | rspceeqv 2894 |
. . . . 5
|
| 15 | 10, 12, 14 | syl2an2r 595 |
. . . 4
|
| 16 | eqeq1 2211 |
. . . . . . 7
| |
| 17 | 16 | rexbidv 2506 |
. . . . . 6
|
| 18 | 17 | elabg 2918 |
. . . . 5
|
| 19 | 18 | adantl 277 |
. . . 4
|
| 20 | 15, 19 | mpbird 167 |
. . 3
|
| 21 | 1, 2, 3, 8, 20 | lspsnel5a 14114 |
. 2
|
| 22 | 3 | adantr 276 |
. . . . . 6
|
| 23 | 4, 1, 2 | lspsncl 14096 |
. . . . . . 7
|
| 24 | 23 | adantr 276 |
. . . . . 6
|
| 25 | simpr 110 |
. . . . . 6
| |
| 26 | 4, 2 | lspsnid 14111 |
. . . . . . 7
|
| 27 | 26 | adantr 276 |
. . . . . 6
|
| 28 | 5, 6, 7, 1 | lssvscl 14079 |
. . . . . 6
|
| 29 | 22, 24, 25, 27, 28 | syl22anc 1250 |
. . . . 5
|
| 30 | eleq1a 2276 |
. . . . 5
| |
| 31 | 29, 30 | syl 14 |
. . . 4
|
| 32 | 31 | rexlimdva 2622 |
. . 3
|
| 33 | 32 | abssdv 3266 |
. 2
|
| 34 | 21, 33 | eqssd 3209 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-ndx 12777 df-slot 12778 df-base 12780 df-sets 12781 df-plusg 12864 df-mulr 12865 df-sca 12867 df-vsca 12868 df-0g 13032 df-mgm 13130 df-sgrp 13176 df-mnd 13191 df-grp 13277 df-minusg 13278 df-sbg 13279 df-mgp 13625 df-ur 13664 df-ring 13702 df-lmod 13993 df-lssm 14057 df-lsp 14091 |
| This theorem is referenced by: ellspsn 14121 |
| Copyright terms: Public domain | W3C validator |