ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspsn Unicode version

Theorem lspsn 13912
Description: Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsn.f  |-  F  =  (Scalar `  W )
lspsn.k  |-  K  =  ( Base `  F
)
lspsn.v  |-  V  =  ( Base `  W
)
lspsn.t  |-  .x.  =  ( .s `  W )
lspsn.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsn  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  =  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) } )
Distinct variable groups:    k, F    v,
k, K    k, N, v    k, V, v    k, W, v    .x. , k, v   
k, X, v
Allowed substitution hint:    F( v)

Proof of Theorem lspsn
StepHypRef Expression
1 eqid 2193 . . 3  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
2 lspsn.n . . 3  |-  N  =  ( LSpan `  W )
3 simpl 109 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  W  e.  LMod )
4 lspsn.v . . . 4  |-  V  =  ( Base `  W
)
5 lspsn.f . . . 4  |-  F  =  (Scalar `  W )
6 lspsn.t . . . 4  |-  .x.  =  ( .s `  W )
7 lspsn.k . . . 4  |-  K  =  ( Base `  F
)
84, 5, 6, 7, 1lss1d 13879 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  e.  ( LSubSp `  W ) )
9 eqid 2193 . . . . . 6  |-  ( 1r
`  F )  =  ( 1r `  F
)
105, 7, 9lmod1cl 13811 . . . . 5  |-  ( W  e.  LMod  ->  ( 1r
`  F )  e.  K )
114, 5, 6, 9lmodvs1 13812 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 1r `  F
)  .x.  X )  =  X )
1211eqcomd 2199 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  =  ( ( 1r
`  F )  .x.  X ) )
13 oveq1 5925 . . . . . 6  |-  ( k  =  ( 1r `  F )  ->  (
k  .x.  X )  =  ( ( 1r
`  F )  .x.  X ) )
1413rspceeqv 2882 . . . . 5  |-  ( ( ( 1r `  F
)  e.  K  /\  X  =  ( ( 1r `  F )  .x.  X ) )  ->  E. k  e.  K  X  =  ( k  .x.  X ) )
1510, 12, 14syl2an2r 595 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  E. k  e.  K  X  =  ( k  .x.  X
) )
16 eqeq1 2200 . . . . . . 7  |-  ( v  =  X  ->  (
v  =  ( k 
.x.  X )  <->  X  =  ( k  .x.  X
) ) )
1716rexbidv 2495 . . . . . 6  |-  ( v  =  X  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  X  =  ( k  .x.  X
) ) )
1817elabg 2906 . . . . 5  |-  ( X  e.  V  ->  ( X  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  X  =  ( k  .x.  X
) ) )
1918adantl 277 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( X  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  X  =  ( k  .x.  X
) ) )
2015, 19mpbird 167 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )
211, 2, 3, 8, 20lspsnel5a 13906 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  C_  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )
223adantr 276 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  W  e.  LMod )
234, 1, 2lspsncl 13888 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  (
LSubSp `  W ) )
2423adantr 276 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( N `  { X } )  e.  ( LSubSp `  W
) )
25 simpr 110 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  k  e.  K )
264, 2lspsnid 13903 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
2726adantr 276 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  X  e.  ( N `  { X } ) )
285, 6, 7, 1lssvscl 13871 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  ( N `  { X } )  e.  (
LSubSp `  W ) )  /\  ( k  e.  K  /\  X  e.  ( N `  { X } ) ) )  ->  ( k  .x.  X )  e.  ( N `  { X } ) )
2922, 24, 25, 27, 28syl22anc 1250 . . . . 5  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( k  .x.  X )  e.  ( N `  { X } ) )
30 eleq1a 2265 . . . . 5  |-  ( ( k  .x.  X )  e.  ( N `  { X } )  -> 
( v  =  ( k  .x.  X )  ->  v  e.  ( N `  { X } ) ) )
3129, 30syl 14 . . . 4  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( v  =  ( k  .x.  X )  ->  v  e.  ( N `  { X } ) ) )
3231rexlimdva 2611 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  ->  v  e.  ( N `  { X } ) ) )
3332abssdv 3253 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  C_  ( N `  { X } ) )
3421, 33eqssd 3196 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  =  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179   E.wrex 2473   {csn 3618   ` cfv 5254  (class class class)co 5918   Basecbs 12618  Scalarcsca 12698   .scvsca 12699   1rcur 13455   LModclmod 13783   LSubSpclss 13848   LSpanclspn 13882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-mgp 13417  df-ur 13456  df-ring 13494  df-lmod 13785  df-lssm 13849  df-lsp 13883
This theorem is referenced by:  ellspsn  13913
  Copyright terms: Public domain W3C validator