ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspsn Unicode version

Theorem lspsn 13749
Description: Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsn.f  |-  F  =  (Scalar `  W )
lspsn.k  |-  K  =  ( Base `  F
)
lspsn.v  |-  V  =  ( Base `  W
)
lspsn.t  |-  .x.  =  ( .s `  W )
lspsn.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsn  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  =  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) } )
Distinct variable groups:    k, F    v,
k, K    k, N, v    k, V, v    k, W, v    .x. , k, v   
k, X, v
Allowed substitution hint:    F( v)

Proof of Theorem lspsn
StepHypRef Expression
1 eqid 2189 . . 3  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
2 lspsn.n . . 3  |-  N  =  ( LSpan `  W )
3 simpl 109 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  W  e.  LMod )
4 lspsn.v . . . 4  |-  V  =  ( Base `  W
)
5 lspsn.f . . . 4  |-  F  =  (Scalar `  W )
6 lspsn.t . . . 4  |-  .x.  =  ( .s `  W )
7 lspsn.k . . . 4  |-  K  =  ( Base `  F
)
84, 5, 6, 7, 1lss1d 13716 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  e.  ( LSubSp `  W ) )
9 eqid 2189 . . . . . 6  |-  ( 1r
`  F )  =  ( 1r `  F
)
105, 7, 9lmod1cl 13648 . . . . 5  |-  ( W  e.  LMod  ->  ( 1r
`  F )  e.  K )
114, 5, 6, 9lmodvs1 13649 . . . . . 6  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 1r `  F
)  .x.  X )  =  X )
1211eqcomd 2195 . . . . 5  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  =  ( ( 1r
`  F )  .x.  X ) )
13 oveq1 5904 . . . . . 6  |-  ( k  =  ( 1r `  F )  ->  (
k  .x.  X )  =  ( ( 1r
`  F )  .x.  X ) )
1413rspceeqv 2874 . . . . 5  |-  ( ( ( 1r `  F
)  e.  K  /\  X  =  ( ( 1r `  F )  .x.  X ) )  ->  E. k  e.  K  X  =  ( k  .x.  X ) )
1510, 12, 14syl2an2r 595 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  E. k  e.  K  X  =  ( k  .x.  X
) )
16 eqeq1 2196 . . . . . . 7  |-  ( v  =  X  ->  (
v  =  ( k 
.x.  X )  <->  X  =  ( k  .x.  X
) ) )
1716rexbidv 2491 . . . . . 6  |-  ( v  =  X  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  <->  E. k  e.  K  X  =  ( k  .x.  X
) ) )
1817elabg 2898 . . . . 5  |-  ( X  e.  V  ->  ( X  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  X  =  ( k  .x.  X
) ) )
1918adantl 277 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( X  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  <->  E. k  e.  K  X  =  ( k  .x.  X
) ) )
2015, 19mpbird 167 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )
211, 2, 3, 8, 20lspsnel5a 13743 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  C_  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) } )
223adantr 276 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  W  e.  LMod )
234, 1, 2lspsncl 13725 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  (
LSubSp `  W ) )
2423adantr 276 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( N `  { X } )  e.  ( LSubSp `  W
) )
25 simpr 110 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  k  e.  K )
264, 2lspsnid 13740 . . . . . . 7  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
2726adantr 276 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  X  e.  ( N `  { X } ) )
285, 6, 7, 1lssvscl 13708 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  ( N `  { X } )  e.  (
LSubSp `  W ) )  /\  ( k  e.  K  /\  X  e.  ( N `  { X } ) ) )  ->  ( k  .x.  X )  e.  ( N `  { X } ) )
2922, 24, 25, 27, 28syl22anc 1250 . . . . 5  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( k  .x.  X )  e.  ( N `  { X } ) )
30 eleq1a 2261 . . . . 5  |-  ( ( k  .x.  X )  e.  ( N `  { X } )  -> 
( v  =  ( k  .x.  X )  ->  v  e.  ( N `  { X } ) ) )
3129, 30syl 14 . . . 4  |-  ( ( ( W  e.  LMod  /\  X  e.  V )  /\  k  e.  K
)  ->  ( v  =  ( k  .x.  X )  ->  v  e.  ( N `  { X } ) ) )
3231rexlimdva 2607 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( E. k  e.  K  v  =  ( k  .x.  X )  ->  v  e.  ( N `  { X } ) ) )
3332abssdv 3244 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { v  |  E. k  e.  K  v  =  ( k  .x.  X ) }  C_  ( N `  { X } ) )
3421, 33eqssd 3187 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  =  {
v  |  E. k  e.  K  v  =  ( k  .x.  X
) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   {cab 2175   E.wrex 2469   {csn 3607   ` cfv 5235  (class class class)co 5897   Basecbs 12515  Scalarcsca 12595   .scvsca 12596   1rcur 13330   LModclmod 13620   LSubSpclss 13685   LSpanclspn 13719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-pre-ltirr 7954  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-pnf 8025  df-mnf 8026  df-ltxr 8028  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-5 9012  df-6 9013  df-ndx 12518  df-slot 12519  df-base 12521  df-sets 12522  df-plusg 12605  df-mulr 12606  df-sca 12608  df-vsca 12609  df-0g 12766  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-grp 12963  df-minusg 12964  df-sbg 12965  df-mgp 13292  df-ur 13331  df-ring 13369  df-lmod 13622  df-lssm 13686  df-lsp 13720
This theorem is referenced by:  lspsnel  13750
  Copyright terms: Public domain W3C validator