ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abssdv GIF version

Theorem abssdv 3231
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
Hypothesis
Ref Expression
abssdv.1 (𝜑 → (𝜓𝑥𝐴))
Assertion
Ref Expression
abssdv (𝜑 → {𝑥𝜓} ⊆ 𝐴)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem abssdv
StepHypRef Expression
1 abssdv.1 . . 3 (𝜑 → (𝜓𝑥𝐴))
21alrimiv 1874 . 2 (𝜑 → ∀𝑥(𝜓𝑥𝐴))
3 abss 3226 . 2 ({𝑥𝜓} ⊆ 𝐴 ↔ ∀𝑥(𝜓𝑥𝐴))
42, 3sylibr 134 1 (𝜑 → {𝑥𝜓} ⊆ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1351  wcel 2148  {cab 2163  wss 3131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-in 3137  df-ss 3144
This theorem is referenced by:  fmpt  5668  tfrlemibacc  6329  tfrlemibfn  6331  tfr1onlembacc  6345  tfr1onlembfn  6347  tfrcllembacc  6358  tfrcllembfn  6360  eroprf  6630  genipv  7510  hashfacen  10818  lss1d  13475  lspsn  13507  metrest  14091
  Copyright terms: Public domain W3C validator