ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abssdv GIF version

Theorem abssdv 3221
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
Hypothesis
Ref Expression
abssdv.1 (𝜑 → (𝜓𝑥𝐴))
Assertion
Ref Expression
abssdv (𝜑 → {𝑥𝜓} ⊆ 𝐴)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem abssdv
StepHypRef Expression
1 abssdv.1 . . 3 (𝜑 → (𝜓𝑥𝐴))
21alrimiv 1867 . 2 (𝜑 → ∀𝑥(𝜓𝑥𝐴))
3 abss 3216 . 2 ({𝑥𝜓} ⊆ 𝐴 ↔ ∀𝑥(𝜓𝑥𝐴))
42, 3sylibr 133 1 (𝜑 → {𝑥𝜓} ⊆ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346  wcel 2141  {cab 2156  wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-in 3127  df-ss 3134
This theorem is referenced by:  fmpt  5646  tfrlemibacc  6305  tfrlemibfn  6307  tfr1onlembacc  6321  tfr1onlembfn  6323  tfrcllembacc  6334  tfrcllembfn  6336  eroprf  6606  genipv  7471  hashfacen  10771  metrest  13300
  Copyright terms: Public domain W3C validator