![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abssdv | GIF version |
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
Ref | Expression |
---|---|
abssdv.1 | ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) |
Ref | Expression |
---|---|
abssdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) | |
2 | 1 | alrimiv 1885 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝑥 ∈ 𝐴)) |
3 | abss 3249 | . 2 ⊢ ({𝑥 ∣ 𝜓} ⊆ 𝐴 ↔ ∀𝑥(𝜓 → 𝑥 ∈ 𝐴)) | |
4 | 2, 3 | sylibr 134 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 ∈ wcel 2164 {cab 2179 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-in 3160 df-ss 3167 |
This theorem is referenced by: fmpt 5709 tfrlemibacc 6381 tfrlemibfn 6383 tfr1onlembacc 6397 tfr1onlembfn 6399 tfrcllembacc 6410 tfrcllembfn 6412 eroprf 6684 genipv 7571 hashfacen 10910 4sqlemafi 12536 4sqlemffi 12537 4sqleminfi 12538 4sqlem11 12542 lss1d 13882 lspsn 13915 metrest 14685 |
Copyright terms: Public domain | W3C validator |