ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abssdv GIF version

Theorem abssdv 3258
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
Hypothesis
Ref Expression
abssdv.1 (𝜑 → (𝜓𝑥𝐴))
Assertion
Ref Expression
abssdv (𝜑 → {𝑥𝜓} ⊆ 𝐴)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem abssdv
StepHypRef Expression
1 abssdv.1 . . 3 (𝜑 → (𝜓𝑥𝐴))
21alrimiv 1888 . 2 (𝜑 → ∀𝑥(𝜓𝑥𝐴))
3 abss 3253 . 2 ({𝑥𝜓} ⊆ 𝐴 ↔ ∀𝑥(𝜓𝑥𝐴))
42, 3sylibr 134 1 (𝜑 → {𝑥𝜓} ⊆ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362  wcel 2167  {cab 2182  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-in 3163  df-ss 3170
This theorem is referenced by:  fmpt  5715  tfrlemibacc  6393  tfrlemibfn  6395  tfr1onlembacc  6409  tfr1onlembfn  6411  tfrcllembacc  6422  tfrcllembfn  6424  eroprf  6696  genipv  7593  hashfacen  10945  4sqlemafi  12589  4sqlemffi  12590  4sqleminfi  12591  4sqlem11  12595  lss1d  14015  lspsn  14048  metrest  14826
  Copyright terms: Public domain W3C validator