ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemibacc Unicode version

Theorem tfrlemibacc 6472
Description: Each element of  B is an acceptable function. Lemma for tfrlemi1 6478. (Contributed by Jim Kingdon, 14-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlemisucfn.2  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
tfrlemi1.3  |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) }
tfrlemi1.4  |-  ( ph  ->  x  e.  On )
tfrlemi1.5  |-  ( ph  ->  A. z  e.  x  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
Assertion
Ref Expression
tfrlemibacc  |-  ( ph  ->  B  C_  A )
Distinct variable groups:    f, g, h, w, x, y, z, A    f, F, g, h, w, x, y, z    ph, w, y    w, B, f, g, h, z    ph, g, h, z
Allowed substitution hints:    ph( x, f)    B( x, y)

Proof of Theorem tfrlemibacc
StepHypRef Expression
1 tfrlemi1.3 . 2  |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) }
2 simpr3 1029 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  h  =  ( g  u.  { <. z ,  ( F `  g ) >. } ) )
3 tfrlemisucfn.1 . . . . . . . 8  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
4 tfrlemisucfn.2 . . . . . . . . 9  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
54ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
6 tfrlemi1.4 . . . . . . . . . 10  |-  ( ph  ->  x  e.  On )
76ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  x  e.  On )
8 simplr 528 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  z  e.  x
)
9 onelon 4475 . . . . . . . . 9  |-  ( ( x  e.  On  /\  z  e.  x )  ->  z  e.  On )
107, 8, 9syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  z  e.  On )
11 simpr1 1027 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  g  Fn  z
)
12 simpr2 1028 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  g  e.  A
)
133, 5, 10, 11, 12tfrlemisucaccv 6471 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  e.  A
)
142, 13eqeltrd 2306 . . . . . 6  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  h  e.  A
)
1514ex 115 . . . . 5  |-  ( (
ph  /\  z  e.  x )  ->  (
( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( F `  g ) >. } ) )  ->  h  e.  A ) )
1615exlimdv 1865 . . . 4  |-  ( (
ph  /\  z  e.  x )  ->  ( E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) )  ->  h  e.  A )
)
1716rexlimdva 2648 . . 3  |-  ( ph  ->  ( E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) )  ->  h  e.  A )
)
1817abssdv 3298 . 2  |-  ( ph  ->  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) } 
C_  A )
191, 18eqsstrid 3270 1  |-  ( ph  ->  B  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002   A.wal 1393    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215   A.wral 2508   E.wrex 2509   _Vcvv 2799    u. cun 3195    C_ wss 3197   {csn 3666   <.cop 3669   Oncon0 4454    |` cres 4721   Fun wfun 5312    Fn wfn 5313   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326
This theorem is referenced by:  tfrlemibfn  6474  tfrlemiubacc  6476
  Copyright terms: Public domain W3C validator