ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemibacc Unicode version

Theorem tfrlemibacc 6379
Description: Each element of  B is an acceptable function. Lemma for tfrlemi1 6385. (Contributed by Jim Kingdon, 14-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlemisucfn.2  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
tfrlemi1.3  |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) }
tfrlemi1.4  |-  ( ph  ->  x  e.  On )
tfrlemi1.5  |-  ( ph  ->  A. z  e.  x  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
Assertion
Ref Expression
tfrlemibacc  |-  ( ph  ->  B  C_  A )
Distinct variable groups:    f, g, h, w, x, y, z, A    f, F, g, h, w, x, y, z    ph, w, y    w, B, f, g, h, z    ph, g, h, z
Allowed substitution hints:    ph( x, f)    B( x, y)

Proof of Theorem tfrlemibacc
StepHypRef Expression
1 tfrlemi1.3 . 2  |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) }
2 simpr3 1007 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  h  =  ( g  u.  { <. z ,  ( F `  g ) >. } ) )
3 tfrlemisucfn.1 . . . . . . . 8  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
4 tfrlemisucfn.2 . . . . . . . . 9  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
54ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
6 tfrlemi1.4 . . . . . . . . . 10  |-  ( ph  ->  x  e.  On )
76ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  x  e.  On )
8 simplr 528 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  z  e.  x
)
9 onelon 4415 . . . . . . . . 9  |-  ( ( x  e.  On  /\  z  e.  x )  ->  z  e.  On )
107, 8, 9syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  z  e.  On )
11 simpr1 1005 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  g  Fn  z
)
12 simpr2 1006 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  g  e.  A
)
133, 5, 10, 11, 12tfrlemisucaccv 6378 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  e.  A
)
142, 13eqeltrd 2270 . . . . . 6  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  h  e.  A
)
1514ex 115 . . . . 5  |-  ( (
ph  /\  z  e.  x )  ->  (
( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( F `  g ) >. } ) )  ->  h  e.  A ) )
1615exlimdv 1830 . . . 4  |-  ( (
ph  /\  z  e.  x )  ->  ( E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) )  ->  h  e.  A )
)
1716rexlimdva 2611 . . 3  |-  ( ph  ->  ( E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) )  ->  h  e.  A )
)
1817abssdv 3253 . 2  |-  ( ph  ->  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) } 
C_  A )
191, 18eqsstrid 3225 1  |-  ( ph  ->  B  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980   A.wal 1362    = wceq 1364   E.wex 1503    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   _Vcvv 2760    u. cun 3151    C_ wss 3153   {csn 3618   <.cop 3621   Oncon0 4394    |` cres 4661   Fun wfun 5248    Fn wfn 5249   ` cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262
This theorem is referenced by:  tfrlemibfn  6381  tfrlemiubacc  6383
  Copyright terms: Public domain W3C validator