ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemibacc Unicode version

Theorem tfrlemibacc 6231
Description: Each element of  B is an acceptable function. Lemma for tfrlemi1 6237. (Contributed by Jim Kingdon, 14-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlemisucfn.2  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
tfrlemi1.3  |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) }
tfrlemi1.4  |-  ( ph  ->  x  e.  On )
tfrlemi1.5  |-  ( ph  ->  A. z  e.  x  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
Assertion
Ref Expression
tfrlemibacc  |-  ( ph  ->  B  C_  A )
Distinct variable groups:    f, g, h, w, x, y, z, A    f, F, g, h, w, x, y, z    ph, w, y    w, B, f, g, h, z    ph, g, h, z
Allowed substitution hints:    ph( x, f)    B( x, y)

Proof of Theorem tfrlemibacc
StepHypRef Expression
1 tfrlemi1.3 . 2  |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) }
2 simpr3 990 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  h  =  ( g  u.  { <. z ,  ( F `  g ) >. } ) )
3 tfrlemisucfn.1 . . . . . . . 8  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
4 tfrlemisucfn.2 . . . . . . . . 9  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
54ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
6 tfrlemi1.4 . . . . . . . . . 10  |-  ( ph  ->  x  e.  On )
76ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  x  e.  On )
8 simplr 520 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  z  e.  x
)
9 onelon 4314 . . . . . . . . 9  |-  ( ( x  e.  On  /\  z  e.  x )  ->  z  e.  On )
107, 8, 9syl2anc 409 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  z  e.  On )
11 simpr1 988 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  g  Fn  z
)
12 simpr2 989 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  g  e.  A
)
133, 5, 10, 11, 12tfrlemisucaccv 6230 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  e.  A
)
142, 13eqeltrd 2217 . . . . . 6  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  h  e.  A
)
1514ex 114 . . . . 5  |-  ( (
ph  /\  z  e.  x )  ->  (
( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( F `  g ) >. } ) )  ->  h  e.  A ) )
1615exlimdv 1792 . . . 4  |-  ( (
ph  /\  z  e.  x )  ->  ( E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) )  ->  h  e.  A )
)
1716rexlimdva 2552 . . 3  |-  ( ph  ->  ( E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) )  ->  h  e.  A )
)
1817abssdv 3176 . 2  |-  ( ph  ->  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) } 
C_  A )
191, 18eqsstrid 3148 1  |-  ( ph  ->  B  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963   A.wal 1330    = wceq 1332   E.wex 1469    e. wcel 1481   {cab 2126   A.wral 2417   E.wrex 2418   _Vcvv 2689    u. cun 3074    C_ wss 3076   {csn 3532   <.cop 3535   Oncon0 4293    |` cres 4549   Fun wfun 5125    Fn wfn 5126   ` cfv 5131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-res 4559  df-iota 5096  df-fun 5133  df-fn 5134  df-fv 5139
This theorem is referenced by:  tfrlemibfn  6233  tfrlemiubacc  6235
  Copyright terms: Public domain W3C validator