ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add32d Unicode version

Theorem add32d 8062
Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
addd.1  |-  ( ph  ->  A  e.  CC )
addd.2  |-  ( ph  ->  B  e.  CC )
addd.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
add32d  |-  ( ph  ->  ( ( A  +  B )  +  C
)  =  ( ( A  +  C )  +  B ) )

Proof of Theorem add32d
StepHypRef Expression
1 addd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 addd.2 . 2  |-  ( ph  ->  B  e.  CC )
3 addd.3 . 2  |-  ( ph  ->  C  e.  CC )
4 add32 8053 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( ( A  +  C )  +  B ) )
51, 2, 3, 4syl3anc 1228 1  |-  ( ph  ->  ( ( A  +  B )  +  C
)  =  ( ( A  +  C )  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136  (class class class)co 5841   CCcc 7747    + caddc 7752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-addcom 7849  ax-addass 7851
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-rex 2449  df-v 2727  df-un 3119  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-iota 5152  df-fv 5195  df-ov 5844
This theorem is referenced by:  nppcan  8116  muladd  8278  peano5uzti  9295  flqaddz  10228  seq3shft2  10404  zesq  10569  abstri  11042  bdtrilem  11176  pythagtriplem1  12193  pythagtriplem12  12203
  Copyright terms: Public domain W3C validator