ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add32d Unicode version

Theorem add32d 8187
Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
addd.1  |-  ( ph  ->  A  e.  CC )
addd.2  |-  ( ph  ->  B  e.  CC )
addd.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
add32d  |-  ( ph  ->  ( ( A  +  B )  +  C
)  =  ( ( A  +  C )  +  B ) )

Proof of Theorem add32d
StepHypRef Expression
1 addd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 addd.2 . 2  |-  ( ph  ->  B  e.  CC )
3 addd.3 . 2  |-  ( ph  ->  C  e.  CC )
4 add32 8178 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( ( A  +  C )  +  B ) )
51, 2, 3, 4syl3anc 1249 1  |-  ( ph  ->  ( ( A  +  B )  +  C
)  =  ( ( A  +  C )  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164  (class class class)co 5918   CCcc 7870    + caddc 7875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-addcom 7972  ax-addass 7974
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921
This theorem is referenced by:  nppcan  8241  muladd  8403  peano5uzti  9425  flqaddz  10366  seq3shft2  10552  zesq  10729  abstri  11248  bdtrilem  11382  pythagtriplem1  12403  pythagtriplem12  12413  gsumfzconst  13411
  Copyright terms: Public domain W3C validator