ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add32d Unicode version

Theorem add32d 8260
Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
addd.1  |-  ( ph  ->  A  e.  CC )
addd.2  |-  ( ph  ->  B  e.  CC )
addd.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
add32d  |-  ( ph  ->  ( ( A  +  B )  +  C
)  =  ( ( A  +  C )  +  B ) )

Proof of Theorem add32d
StepHypRef Expression
1 addd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 addd.2 . 2  |-  ( ph  ->  B  e.  CC )
3 addd.3 . 2  |-  ( ph  ->  C  e.  CC )
4 add32 8251 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( ( A  +  C )  +  B ) )
51, 2, 3, 4syl3anc 1250 1  |-  ( ph  ->  ( ( A  +  B )  +  C
)  =  ( ( A  +  C )  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177  (class class class)co 5957   CCcc 7943    + caddc 7948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-addcom 8045  ax-addass 8047
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-un 3174  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-iota 5241  df-fv 5288  df-ov 5960
This theorem is referenced by:  nppcan  8314  muladd  8476  peano5uzti  9501  flqaddz  10462  seq3shft2  10648  zesq  10825  abstri  11490  bdtrilem  11625  pythagtriplem1  12663  pythagtriplem12  12673  gsumfzconst  13752
  Copyright terms: Public domain W3C validator