Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > add32d | Unicode version |
Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addd.1 | |
addd.2 | |
addd.3 |
Ref | Expression |
---|---|
add32d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addd.1 | . 2 | |
2 | addd.2 | . 2 | |
3 | addd.3 | . 2 | |
4 | add32 8053 | . 2 | |
5 | 1, 2, 3, 4 | syl3anc 1228 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 (class class class)co 5841 cc 7747 caddc 7752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-addcom 7849 ax-addass 7851 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 |
This theorem is referenced by: nppcan 8116 muladd 8278 peano5uzti 9295 flqaddz 10228 seq3shft2 10404 zesq 10569 abstri 11042 bdtrilem 11176 pythagtriplem1 12193 pythagtriplem12 12203 |
Copyright terms: Public domain | W3C validator |