Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > add32d | Unicode version |
Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addd.1 | |
addd.2 | |
addd.3 |
Ref | Expression |
---|---|
add32d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addd.1 | . 2 | |
2 | addd.2 | . 2 | |
3 | addd.3 | . 2 | |
4 | add32 8078 | . 2 | |
5 | 1, 2, 3, 4 | syl3anc 1233 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 (class class class)co 5853 cc 7772 caddc 7777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-addcom 7874 ax-addass 7876 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: nppcan 8141 muladd 8303 peano5uzti 9320 flqaddz 10253 seq3shft2 10429 zesq 10594 abstri 11068 bdtrilem 11202 pythagtriplem1 12219 pythagtriplem12 12229 |
Copyright terms: Public domain | W3C validator |