ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeo Unicode version

Theorem opeo 11834
Description: The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
opeo  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  ->  -.  2  ||  ( A  +  B ) )

Proof of Theorem opeo
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odd2np1 11810 . . . . . 6  |-  ( A  e.  ZZ  ->  ( -.  2  ||  A  <->  E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A ) )
2 2z 9219 . . . . . . 7  |-  2  e.  ZZ
3 divides 11729 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  ||  B  <->  E. b  e.  ZZ  (
b  x.  2 )  =  B ) )
42, 3mpan 421 . . . . . 6  |-  ( B  e.  ZZ  ->  (
2  ||  B  <->  E. b  e.  ZZ  ( b  x.  2 )  =  B ) )
51, 4bi2anan9 596 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( -.  2  ||  A  /\  2  ||  B )  <->  ( E. a  e.  ZZ  (
( 2  x.  a
)  +  1 )  =  A  /\  E. b  e.  ZZ  (
b  x.  2 )  =  B ) ) )
6 reeanv 2635 . . . . . 6  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  <-> 
( E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A  /\  E. b  e.  ZZ  ( b  x.  2 )  =  B ) )
7 zaddcl 9231 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  +  b )  e.  ZZ )
8 zcn 9196 . . . . . . . . . 10  |-  ( a  e.  ZZ  ->  a  e.  CC )
9 zcn 9196 . . . . . . . . . 10  |-  ( b  e.  ZZ  ->  b  e.  CC )
10 2cn 8928 . . . . . . . . . . . . 13  |-  2  e.  CC
11 adddi 7885 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  a  e.  CC  /\  b  e.  CC )  ->  (
2  x.  ( a  +  b ) )  =  ( ( 2  x.  a )  +  ( 2  x.  b
) ) )
1210, 11mp3an1 1314 . . . . . . . . . . . 12  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  (
a  +  b ) )  =  ( ( 2  x.  a )  +  ( 2  x.  b ) ) )
1312oveq1d 5857 . . . . . . . . . . 11  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( 2  x.  ( a  +  b ) )  +  1 )  =  ( ( ( 2  x.  a
)  +  ( 2  x.  b ) )  +  1 ) )
14 mulcl 7880 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  a  e.  CC )  ->  ( 2  x.  a
)  e.  CC )
1510, 14mpan 421 . . . . . . . . . . . 12  |-  ( a  e.  CC  ->  (
2  x.  a )  e.  CC )
16 mulcl 7880 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  b
)  e.  CC )
1710, 16mpan 421 . . . . . . . . . . . 12  |-  ( b  e.  CC  ->  (
2  x.  b )  e.  CC )
18 ax-1cn 7846 . . . . . . . . . . . . 13  |-  1  e.  CC
19 add32 8057 . . . . . . . . . . . . 13  |-  ( ( ( 2  x.  a
)  e.  CC  /\  ( 2  x.  b
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  a )  +  ( 2  x.  b
) )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( 2  x.  b ) ) )
2018, 19mp3an3 1316 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  a
)  e.  CC  /\  ( 2  x.  b
)  e.  CC )  ->  ( ( ( 2  x.  a )  +  ( 2  x.  b ) )  +  1 )  =  ( ( ( 2  x.  a )  +  1 )  +  ( 2  x.  b ) ) )
2115, 17, 20syl2an 287 . . . . . . . . . . 11  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( ( 2  x.  a )  +  ( 2  x.  b
) )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( 2  x.  b ) ) )
22 mulcom 7882 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  b
)  =  ( b  x.  2 ) )
2310, 22mpan 421 . . . . . . . . . . . . 13  |-  ( b  e.  CC  ->  (
2  x.  b )  =  ( b  x.  2 ) )
2423adantl 275 . . . . . . . . . . . 12  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( 2  x.  b
)  =  ( b  x.  2 ) )
2524oveq2d 5858 . . . . . . . . . . 11  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( ( 2  x.  a )  +  1 )  +  ( 2  x.  b ) )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( b  x.  2 ) ) )
2613, 21, 253eqtrd 2202 . . . . . . . . . 10  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( ( 2  x.  ( a  +  b ) )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( b  x.  2 ) ) )
278, 9, 26syl2an 287 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( 2  x.  ( a  +  b ) )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( b  x.  2 ) ) )
28 oveq2 5850 . . . . . . . . . . . 12  |-  ( c  =  ( a  +  b )  ->  (
2  x.  c )  =  ( 2  x.  ( a  +  b ) ) )
2928oveq1d 5857 . . . . . . . . . . 11  |-  ( c  =  ( a  +  b )  ->  (
( 2  x.  c
)  +  1 )  =  ( ( 2  x.  ( a  +  b ) )  +  1 ) )
3029eqeq1d 2174 . . . . . . . . . 10  |-  ( c  =  ( a  +  b )  ->  (
( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( b  x.  2 ) )  <->  ( (
2  x.  ( a  +  b ) )  +  1 )  =  ( ( ( 2  x.  a )  +  1 )  +  ( b  x.  2 ) ) ) )
3130rspcev 2830 . . . . . . . . 9  |-  ( ( ( a  +  b )  e.  ZZ  /\  ( ( 2  x.  ( a  +  b ) )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( b  x.  2 ) ) )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( b  x.  2 ) ) )
327, 27, 31syl2anc 409 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a
)  +  1 )  +  ( b  x.  2 ) ) )
33 oveq12 5851 . . . . . . . . . 10  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  ( ( ( 2  x.  a )  +  1 )  +  ( b  x.  2 ) )  =  ( A  +  B ) )
3433eqeq2d 2177 . . . . . . . . 9  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  ( ( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a )  +  1 )  +  ( b  x.  2 ) )  <->  ( ( 2  x.  c )  +  1 )  =  ( A  +  B ) ) )
3534rexbidv 2467 . . . . . . . 8  |-  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  ( E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( ( ( 2  x.  a )  +  1 )  +  ( b  x.  2 ) )  <->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  +  B ) ) )
3632, 35syl5ibcom 154 . . . . . . 7  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( ( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  +  B ) ) )
3736rexlimivv 2589 . . . . . 6  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( ( 2  x.  a )  +  1 )  =  A  /\  ( b  x.  2 )  =  B )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  +  B ) )
386, 37sylbir 134 . . . . 5  |-  ( ( E. a  e.  ZZ  ( ( 2  x.  a )  +  1 )  =  A  /\  E. b  e.  ZZ  (
b  x.  2 )  =  B )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  +  B ) )
395, 38syl6bi 162 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( -.  2  ||  A  /\  2  ||  B )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  +  B ) ) )
4039imp 123 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  2  ||  B ) )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  +  B ) )
4140an4s 578 . 2  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  ->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  +  B ) )
42 zaddcl 9231 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  +  B
)  e.  ZZ )
4342ad2ant2r 501 . . 3  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  -> 
( A  +  B
)  e.  ZZ )
44 odd2np1 11810 . . 3  |-  ( ( A  +  B )  e.  ZZ  ->  ( -.  2  ||  ( A  +  B )  <->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  +  B ) ) )
4543, 44syl 14 . 2  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  -> 
( -.  2  ||  ( A  +  B
)  <->  E. c  e.  ZZ  ( ( 2  x.  c )  +  1 )  =  ( A  +  B ) ) )
4641, 45mpbird 166 1  |-  ( ( ( A  e.  ZZ  /\ 
-.  2  ||  A
)  /\  ( B  e.  ZZ  /\  2  ||  B ) )  ->  -.  2  ||  ( A  +  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   E.wrex 2445   class class class wbr 3982  (class class class)co 5842   CCcc 7751   1c1 7754    + caddc 7756    x. cmul 7758   2c2 8908   ZZcz 9191    || cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-xor 1366  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-dvds 11728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator