ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elimasng Unicode version

Theorem elimasng 4998
Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.)
Assertion
Ref Expression
elimasng  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( C  e.  ( A " { B } )  <->  <. B ,  C >.  e.  A ) )

Proof of Theorem elimasng
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 3605 . . . . 5  |-  ( y  =  B  ->  { y }  =  { B } )
21imaeq2d 4972 . . . 4  |-  ( y  =  B  ->  ( A " { y } )  =  ( A
" { B }
) )
32eleq2d 2247 . . 3  |-  ( y  =  B  ->  (
z  e.  ( A
" { y } )  <->  z  e.  ( A " { B } ) ) )
4 opeq1 3780 . . . 4  |-  ( y  =  B  ->  <. y ,  z >.  =  <. B ,  z >. )
54eleq1d 2246 . . 3  |-  ( y  =  B  ->  ( <. y ,  z >.  e.  A  <->  <. B ,  z
>.  e.  A ) )
63, 5bibi12d 235 . 2  |-  ( y  =  B  ->  (
( z  e.  ( A " { y } )  <->  <. y ,  z >.  e.  A
)  <->  ( z  e.  ( A " { B } )  <->  <. B , 
z >.  e.  A ) ) )
7 eleq1 2240 . . 3  |-  ( z  =  C  ->  (
z  e.  ( A
" { B }
)  <->  C  e.  ( A " { B }
) ) )
8 opeq2 3781 . . . 4  |-  ( z  =  C  ->  <. B , 
z >.  =  <. B ,  C >. )
98eleq1d 2246 . . 3  |-  ( z  =  C  ->  ( <. B ,  z >.  e.  A  <->  <. B ,  C >.  e.  A ) )
107, 9bibi12d 235 . 2  |-  ( z  =  C  ->  (
( z  e.  ( A " { B } )  <->  <. B , 
z >.  e.  A )  <-> 
( C  e.  ( A " { B } )  <->  <. B ,  C >.  e.  A ) ) )
11 vex 2742 . . 3  |-  y  e. 
_V
12 vex 2742 . . 3  |-  z  e. 
_V
1311, 12elimasn 4997 . 2  |-  ( z  e.  ( A " { y } )  <->  <. y ,  z >.  e.  A )
146, 10, 13vtocl2g 2803 1  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( C  e.  ( A " { B } )  <->  <. B ,  C >.  e.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   {csn 3594   <.cop 3597   "cima 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641
This theorem is referenced by:  eliniseg  5000  inimasn  5048  dffv3g  5513  fvimacnv  5633  funfvima3  5752  elecg  6575  imasnopn  13884
  Copyright terms: Public domain W3C validator