ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elimasng Unicode version

Theorem elimasng 4947
Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.)
Assertion
Ref Expression
elimasng  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( C  e.  ( A " { B } )  <->  <. B ,  C >.  e.  A ) )

Proof of Theorem elimasng
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 3567 . . . . 5  |-  ( y  =  B  ->  { y }  =  { B } )
21imaeq2d 4921 . . . 4  |-  ( y  =  B  ->  ( A " { y } )  =  ( A
" { B }
) )
32eleq2d 2224 . . 3  |-  ( y  =  B  ->  (
z  e.  ( A
" { y } )  <->  z  e.  ( A " { B } ) ) )
4 opeq1 3737 . . . 4  |-  ( y  =  B  ->  <. y ,  z >.  =  <. B ,  z >. )
54eleq1d 2223 . . 3  |-  ( y  =  B  ->  ( <. y ,  z >.  e.  A  <->  <. B ,  z
>.  e.  A ) )
63, 5bibi12d 234 . 2  |-  ( y  =  B  ->  (
( z  e.  ( A " { y } )  <->  <. y ,  z >.  e.  A
)  <->  ( z  e.  ( A " { B } )  <->  <. B , 
z >.  e.  A ) ) )
7 eleq1 2217 . . 3  |-  ( z  =  C  ->  (
z  e.  ( A
" { B }
)  <->  C  e.  ( A " { B }
) ) )
8 opeq2 3738 . . . 4  |-  ( z  =  C  ->  <. B , 
z >.  =  <. B ,  C >. )
98eleq1d 2223 . . 3  |-  ( z  =  C  ->  ( <. B ,  z >.  e.  A  <->  <. B ,  C >.  e.  A ) )
107, 9bibi12d 234 . 2  |-  ( z  =  C  ->  (
( z  e.  ( A " { B } )  <->  <. B , 
z >.  e.  A )  <-> 
( C  e.  ( A " { B } )  <->  <. B ,  C >.  e.  A ) ) )
11 vex 2712 . . 3  |-  y  e. 
_V
12 vex 2712 . . 3  |-  z  e. 
_V
1311, 12elimasn 4946 . 2  |-  ( z  e.  ( A " { y } )  <->  <. y ,  z >.  e.  A )
146, 10, 13vtocl2g 2773 1  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( C  e.  ( A " { B } )  <->  <. B ,  C >.  e.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 2125   {csn 3556   <.cop 3559   "cima 4582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-sbc 2934  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-br 3962  df-opab 4022  df-xp 4585  df-cnv 4587  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592
This theorem is referenced by:  eliniseg  4949  inimasn  4996  dffv3g  5457  fvimacnv  5575  funfvima3  5691  elecg  6507  imasnopn  12646
  Copyright terms: Public domain W3C validator