Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elimasng | Unicode version |
Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) |
Ref | Expression |
---|---|
elimasng |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3567 | . . . . 5 | |
2 | 1 | imaeq2d 4921 | . . . 4 |
3 | 2 | eleq2d 2224 | . . 3 |
4 | opeq1 3737 | . . . 4 | |
5 | 4 | eleq1d 2223 | . . 3 |
6 | 3, 5 | bibi12d 234 | . 2 |
7 | eleq1 2217 | . . 3 | |
8 | opeq2 3738 | . . . 4 | |
9 | 8 | eleq1d 2223 | . . 3 |
10 | 7, 9 | bibi12d 234 | . 2 |
11 | vex 2712 | . . 3 | |
12 | vex 2712 | . . 3 | |
13 | 11, 12 | elimasn 4946 | . 2 |
14 | 6, 10, 13 | vtocl2g 2773 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1332 wcel 2125 csn 3556 cop 3559 cima 4582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-sbc 2934 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 df-opab 4022 df-xp 4585 df-cnv 4587 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 |
This theorem is referenced by: eliniseg 4949 inimasn 4996 dffv3g 5457 fvimacnv 5575 funfvima3 5691 elecg 6507 imasnopn 12646 |
Copyright terms: Public domain | W3C validator |