Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elimasng | Unicode version |
Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.) |
Ref | Expression |
---|---|
elimasng |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3594 | . . . . 5 | |
2 | 1 | imaeq2d 4953 | . . . 4 |
3 | 2 | eleq2d 2240 | . . 3 |
4 | opeq1 3765 | . . . 4 | |
5 | 4 | eleq1d 2239 | . . 3 |
6 | 3, 5 | bibi12d 234 | . 2 |
7 | eleq1 2233 | . . 3 | |
8 | opeq2 3766 | . . . 4 | |
9 | 8 | eleq1d 2239 | . . 3 |
10 | 7, 9 | bibi12d 234 | . 2 |
11 | vex 2733 | . . 3 | |
12 | vex 2733 | . . 3 | |
13 | 11, 12 | elimasn 4978 | . 2 |
14 | 6, 10, 13 | vtocl2g 2794 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 csn 3583 cop 3586 cima 4614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 |
This theorem is referenced by: eliniseg 4981 inimasn 5028 dffv3g 5492 fvimacnv 5611 funfvima3 5729 elecg 6551 imasnopn 13093 |
Copyright terms: Public domain | W3C validator |