ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elimasng Unicode version

Theorem elimasng 5038
Description: Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.)
Assertion
Ref Expression
elimasng  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( C  e.  ( A " { B } )  <->  <. B ,  C >.  e.  A ) )

Proof of Theorem elimasng
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 3634 . . . . 5  |-  ( y  =  B  ->  { y }  =  { B } )
21imaeq2d 5010 . . . 4  |-  ( y  =  B  ->  ( A " { y } )  =  ( A
" { B }
) )
32eleq2d 2266 . . 3  |-  ( y  =  B  ->  (
z  e.  ( A
" { y } )  <->  z  e.  ( A " { B } ) ) )
4 opeq1 3809 . . . 4  |-  ( y  =  B  ->  <. y ,  z >.  =  <. B ,  z >. )
54eleq1d 2265 . . 3  |-  ( y  =  B  ->  ( <. y ,  z >.  e.  A  <->  <. B ,  z
>.  e.  A ) )
63, 5bibi12d 235 . 2  |-  ( y  =  B  ->  (
( z  e.  ( A " { y } )  <->  <. y ,  z >.  e.  A
)  <->  ( z  e.  ( A " { B } )  <->  <. B , 
z >.  e.  A ) ) )
7 eleq1 2259 . . 3  |-  ( z  =  C  ->  (
z  e.  ( A
" { B }
)  <->  C  e.  ( A " { B }
) ) )
8 opeq2 3810 . . . 4  |-  ( z  =  C  ->  <. B , 
z >.  =  <. B ,  C >. )
98eleq1d 2265 . . 3  |-  ( z  =  C  ->  ( <. B ,  z >.  e.  A  <->  <. B ,  C >.  e.  A ) )
107, 9bibi12d 235 . 2  |-  ( z  =  C  ->  (
( z  e.  ( A " { B } )  <->  <. B , 
z >.  e.  A )  <-> 
( C  e.  ( A " { B } )  <->  <. B ,  C >.  e.  A ) ) )
11 vex 2766 . . 3  |-  y  e. 
_V
12 vex 2766 . . 3  |-  z  e. 
_V
1311, 12elimasn 5037 . 2  |-  ( z  e.  ( A " { y } )  <->  <. y ,  z >.  e.  A )
146, 10, 13vtocl2g 2828 1  |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( C  e.  ( A " { B } )  <->  <. B ,  C >.  e.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {csn 3623   <.cop 3626   "cima 4667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677
This theorem is referenced by:  eliniseg  5040  inimasn  5088  dffv3g  5557  fvimacnv  5680  funfvima3  5799  elecg  6641  imasnopn  14619
  Copyright terms: Public domain W3C validator