ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unexb Unicode version

Theorem unexb 4358
Description: Existence of union is equivalent to existence of its components. (Contributed by NM, 11-Jun-1998.)
Assertion
Ref Expression
unexb  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  ( A  u.  B )  e.  _V )

Proof of Theorem unexb
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3218 . . . 4  |-  ( x  =  A  ->  (
x  u.  y )  =  ( A  u.  y ) )
21eleq1d 2206 . . 3  |-  ( x  =  A  ->  (
( x  u.  y
)  e.  _V  <->  ( A  u.  y )  e.  _V ) )
3 uneq2 3219 . . . 4  |-  ( y  =  B  ->  ( A  u.  y )  =  ( A  u.  B ) )
43eleq1d 2206 . . 3  |-  ( y  =  B  ->  (
( A  u.  y
)  e.  _V  <->  ( A  u.  B )  e.  _V ) )
5 vex 2684 . . . 4  |-  x  e. 
_V
6 vex 2684 . . . 4  |-  y  e. 
_V
75, 6unex 4357 . . 3  |-  ( x  u.  y )  e. 
_V
82, 4, 7vtocl2g 2745 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  u.  B
)  e.  _V )
9 ssun1 3234 . . . 4  |-  A  C_  ( A  u.  B
)
10 ssexg 4062 . . . 4  |-  ( ( A  C_  ( A  u.  B )  /\  ( A  u.  B )  e.  _V )  ->  A  e.  _V )
119, 10mpan 420 . . 3  |-  ( ( A  u.  B )  e.  _V  ->  A  e.  _V )
12 ssun2 3235 . . . 4  |-  B  C_  ( A  u.  B
)
13 ssexg 4062 . . . 4  |-  ( ( B  C_  ( A  u.  B )  /\  ( A  u.  B )  e.  _V )  ->  B  e.  _V )
1412, 13mpan 420 . . 3  |-  ( ( A  u.  B )  e.  _V  ->  B  e.  _V )
1511, 14jca 304 . 2  |-  ( ( A  u.  B )  e.  _V  ->  ( A  e.  _V  /\  B  e.  _V ) )
168, 15impbii 125 1  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  ( A  u.  B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   _Vcvv 2681    u. cun 3064    C_ wss 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-sn 3528  df-pr 3529  df-uni 3732
This theorem is referenced by:  unexg  4359  sucexb  4408  frecabex  6288  djuexb  6922
  Copyright terms: Public domain W3C validator