ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unexb Unicode version

Theorem unexb 4420
Description: Existence of union is equivalent to existence of its components. (Contributed by NM, 11-Jun-1998.)
Assertion
Ref Expression
unexb  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  ( A  u.  B )  e.  _V )

Proof of Theorem unexb
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3269 . . . 4  |-  ( x  =  A  ->  (
x  u.  y )  =  ( A  u.  y ) )
21eleq1d 2235 . . 3  |-  ( x  =  A  ->  (
( x  u.  y
)  e.  _V  <->  ( A  u.  y )  e.  _V ) )
3 uneq2 3270 . . . 4  |-  ( y  =  B  ->  ( A  u.  y )  =  ( A  u.  B ) )
43eleq1d 2235 . . 3  |-  ( y  =  B  ->  (
( A  u.  y
)  e.  _V  <->  ( A  u.  B )  e.  _V ) )
5 vex 2729 . . . 4  |-  x  e. 
_V
6 vex 2729 . . . 4  |-  y  e. 
_V
75, 6unex 4419 . . 3  |-  ( x  u.  y )  e. 
_V
82, 4, 7vtocl2g 2790 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  u.  B
)  e.  _V )
9 ssun1 3285 . . . 4  |-  A  C_  ( A  u.  B
)
10 ssexg 4121 . . . 4  |-  ( ( A  C_  ( A  u.  B )  /\  ( A  u.  B )  e.  _V )  ->  A  e.  _V )
119, 10mpan 421 . . 3  |-  ( ( A  u.  B )  e.  _V  ->  A  e.  _V )
12 ssun2 3286 . . . 4  |-  B  C_  ( A  u.  B
)
13 ssexg 4121 . . . 4  |-  ( ( B  C_  ( A  u.  B )  /\  ( A  u.  B )  e.  _V )  ->  B  e.  _V )
1412, 13mpan 421 . . 3  |-  ( ( A  u.  B )  e.  _V  ->  B  e.  _V )
1511, 14jca 304 . 2  |-  ( ( A  u.  B )  e.  _V  ->  ( A  e.  _V  /\  B  e.  _V ) )
168, 15impbii 125 1  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  ( A  u.  B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726    u. cun 3114    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-uni 3790
This theorem is referenced by:  unexg  4421  sucexb  4474  frecabex  6366  djuexb  7009
  Copyright terms: Public domain W3C validator