ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulap0r Unicode version

Theorem mulap0r 8758
Description: A product apart from zero. Lemma 2.13 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 24-Feb-2020.)
Assertion
Ref Expression
mulap0r  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  /\  B #  0 ) )

Proof of Theorem mulap0r
StepHypRef Expression
1 simp3 1023 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A  x.  B ) #  0 )
2 simp2 1022 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  B  e.  CC )
32mul02d 8534 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  (
0  x.  B )  =  0 )
41, 3breqtrrd 4110 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A  x.  B ) #  ( 0  x.  B
) )
5 simp1 1021 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  A  e.  CC )
6 0cnd 8135 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  0  e.  CC )
7 mulext 8757 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( 0  e.  CC  /\  B  e.  CC ) )  -> 
( ( A  x.  B ) #  ( 0  x.  B )  -> 
( A #  0  \/  B #  B ) ) )
85, 2, 6, 2, 7syl22anc 1272 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  (
( A  x.  B
) #  ( 0  x.  B )  ->  ( A #  0  \/  B #  B ) ) )
94, 8mpd 13 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  \/  B #  B ) )
109orcomd 734 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( B #  B  \/  A #  0 ) )
11 apirr 8748 . . . 4  |-  ( B  e.  CC  ->  -.  B #  B )
12 biorf 749 . . . 4  |-  ( -.  B #  B  ->  ( A #  0  <->  ( B #  B  \/  A #  0 )
) )
132, 11, 123syl 17 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  <->  ( B #  B  \/  A #  0 )
) )
1410, 13mpbird 167 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  A #  0 )
155mul01d 8535 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A  x.  0 )  =  0 )
161, 15breqtrrd 4110 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A  x.  B ) #  ( A  x.  0
) )
17 mulext 8757 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( A  e.  CC  /\  0  e.  CC ) )  -> 
( ( A  x.  B ) #  ( A  x.  0 )  ->  ( A #  A  \/  B #  0 ) ) )
185, 2, 5, 6, 17syl22anc 1272 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  (
( A  x.  B
) #  ( A  x.  0 )  ->  ( A #  A  \/  B #  0 ) ) )
1916, 18mpd 13 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  A  \/  B #  0 ) )
20 apirr 8748 . . . 4  |-  ( A  e.  CC  ->  -.  A #  A )
21 biorf 749 . . . 4  |-  ( -.  A #  A  ->  ( B #  0  <->  ( A #  A  \/  B #  0 )
) )
225, 20, 213syl 17 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( B #  0  <->  ( A #  A  \/  B #  0 )
) )
2319, 22mpbird 167 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  B #  0 )
2414, 23jca 306 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  /\  B #  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    e. wcel 2200   class class class wbr 4082  (class class class)co 6000   CCcc 7993   0cc0 7995    x. cmul 8000   # cap 8724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725
This theorem is referenced by:  msqge0  8759  mulge0  8762  mulap0b  8798
  Copyright terms: Public domain W3C validator