ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulap0r Unicode version

Theorem mulap0r 8513
Description: A product apart from zero. Lemma 2.13 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 24-Feb-2020.)
Assertion
Ref Expression
mulap0r  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  /\  B #  0 ) )

Proof of Theorem mulap0r
StepHypRef Expression
1 simp3 989 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A  x.  B ) #  0 )
2 simp2 988 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  B  e.  CC )
32mul02d 8290 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  (
0  x.  B )  =  0 )
41, 3breqtrrd 4010 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A  x.  B ) #  ( 0  x.  B
) )
5 simp1 987 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  A  e.  CC )
6 0cnd 7892 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  0  e.  CC )
7 mulext 8512 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( 0  e.  CC  /\  B  e.  CC ) )  -> 
( ( A  x.  B ) #  ( 0  x.  B )  -> 
( A #  0  \/  B #  B ) ) )
85, 2, 6, 2, 7syl22anc 1229 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  (
( A  x.  B
) #  ( 0  x.  B )  ->  ( A #  0  \/  B #  B ) ) )
94, 8mpd 13 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  \/  B #  B ) )
109orcomd 719 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( B #  B  \/  A #  0 ) )
11 apirr 8503 . . . 4  |-  ( B  e.  CC  ->  -.  B #  B )
12 biorf 734 . . . 4  |-  ( -.  B #  B  ->  ( A #  0  <->  ( B #  B  \/  A #  0 )
) )
132, 11, 123syl 17 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  <->  ( B #  B  \/  A #  0 )
) )
1410, 13mpbird 166 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  A #  0 )
155mul01d 8291 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A  x.  0 )  =  0 )
161, 15breqtrrd 4010 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A  x.  B ) #  ( A  x.  0
) )
17 mulext 8512 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( A  e.  CC  /\  0  e.  CC ) )  -> 
( ( A  x.  B ) #  ( A  x.  0 )  ->  ( A #  A  \/  B #  0 ) ) )
185, 2, 5, 6, 17syl22anc 1229 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  (
( A  x.  B
) #  ( A  x.  0 )  ->  ( A #  A  \/  B #  0 ) ) )
1916, 18mpd 13 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  A  \/  B #  0 ) )
20 apirr 8503 . . . 4  |-  ( A  e.  CC  ->  -.  A #  A )
21 biorf 734 . . . 4  |-  ( -.  A #  A  ->  ( B #  0  <->  ( A #  A  \/  B #  0 )
) )
225, 20, 213syl 17 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( B #  0  <->  ( A #  A  \/  B #  0 )
) )
2319, 22mpbird 166 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  B #  0 )
2414, 23jca 304 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( A  x.  B ) #  0 )  ->  ( A #  0  /\  B #  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 968    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   CCcc 7751   0cc0 7753    x. cmul 7758   # cap 8479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-ltxr 7938  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480
This theorem is referenced by:  msqge0  8514  mulge0  8517  mulap0b  8552
  Copyright terms: Public domain W3C validator