ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdbl Unicode version

Theorem bdbl 15090
Description: The standard bounded metric corresponding to  C generates the same balls as  C for radii less than  R. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
Hypothesis
Ref Expression
stdbdmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
Assertion
Ref Expression
bdbl  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  ( P ( ball `  D
) S )  =  ( P ( ball `  C ) S ) )
Distinct variable groups:    x, y, C   
x, P, y    x, R, y    x, X, y
Allowed substitution hints:    D( x, y)    S( x, y)

Proof of Theorem bdbl
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simpr2 1007 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  S  e.  RR* )
21adantr 276 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  S  e.  RR* )
3 simpl1 1003 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  C  e.  ( *Met `  X ) )
43adantr 276 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  C  e.  ( *Met `  X ) )
5 simpr1 1006 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  P  e.  X )
65adantr 276 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  P  e.  X )
7 simpr 110 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  z  e.  X )
8 xmetcl 14939 . . . . . 6  |-  ( ( C  e.  ( *Met `  X )  /\  P  e.  X  /\  z  e.  X
)  ->  ( P C z )  e. 
RR* )
94, 6, 7, 8syl3anc 1250 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( P C z )  e.  RR* )
10 simpll2 1040 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  R  e.  RR* )
11 xrminltinf 11698 . . . . 5  |-  ( ( S  e.  RR*  /\  ( P C z )  e. 
RR*  /\  R  e.  RR* )  ->  (inf ( { ( P C z ) ,  R } ,  RR* ,  <  )  <  S  <->  ( ( P C z )  < 
S  \/  R  < 
S ) ) )
122, 9, 10, 11syl3anc 1250 . . . 4  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  (inf ( { ( P C z ) ,  R } ,  RR* ,  <  )  < 
S  <->  ( ( P C z )  < 
S  \/  R  < 
S ) ) )
13 xmetf 14937 . . . . . . . . 9  |-  ( C  e.  ( *Met `  X )  ->  C : ( X  X.  X ) --> RR* )
14133ad2ant1 1021 . . . . . . . 8  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  C : ( X  X.  X ) -->
RR* )
1514adantr 276 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  C : ( X  X.  X ) --> RR* )
1615adantr 276 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  C : ( X  X.  X ) --> RR* )
17 stdbdmet.1 . . . . . . 7  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
1817bdmetval 15087 . . . . . 6  |-  ( ( ( C : ( X  X.  X ) -->
RR*  /\  R  e.  RR* )  /\  ( P  e.  X  /\  z  e.  X ) )  -> 
( P D z )  = inf ( { ( P C z ) ,  R } ,  RR* ,  <  )
)
1916, 10, 6, 7, 18syl22anc 1251 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( P D z )  = inf ( { ( P C z ) ,  R } ,  RR* ,  <  )
)
2019breq1d 4069 . . . 4  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( ( P D z )  <  S  <-> inf ( { ( P C z ) ,  R } ,  RR* ,  <  )  <  S ) )
21 simpr3 1008 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  S  <_  R )
22 simpl2 1004 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  R  e.  RR* )
23 xrlenlt 8172 . . . . . . . . 9  |-  ( ( S  e.  RR*  /\  R  e.  RR* )  ->  ( S  <_  R  <->  -.  R  <  S ) )
241, 22, 23syl2anc 411 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  ( S  <_  R  <->  -.  R  <  S ) )
2521, 24mpbid 147 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  -.  R  <  S )
26 biorf 746 . . . . . . 7  |-  ( -.  R  <  S  -> 
( ( P C z )  <  S  <->  ( R  <  S  \/  ( P C z )  <  S ) ) )
2725, 26syl 14 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  (
( P C z )  <  S  <->  ( R  <  S  \/  ( P C z )  < 
S ) ) )
28 orcom 730 . . . . . 6  |-  ( ( R  <  S  \/  ( P C z )  <  S )  <->  ( ( P C z )  < 
S  \/  R  < 
S ) )
2927, 28bitrdi 196 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  (
( P C z )  <  S  <->  ( ( P C z )  < 
S  \/  R  < 
S ) ) )
3029adantr 276 . . . 4  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( ( P C z )  <  S  <->  ( ( P C z )  <  S  \/  R  <  S ) ) )
3112, 20, 303bitr4d 220 . . 3  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( ( P D z )  <  S  <->  ( P C z )  <  S ) )
3231rabbidva 2764 . 2  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  { z  e.  X  |  ( P D z )  <  S }  =  { z  e.  X  |  ( P C z )  <  S } )
3317bdxmet 15088 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X
) )
3433adantr 276 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  D  e.  ( *Met `  X ) )
35 blval 14976 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  S  e.  RR* )  ->  ( P ( ball `  D ) S )  =  { z  e.  X  |  ( P D z )  < 
S } )
3634, 5, 1, 35syl3anc 1250 . 2  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  ( P ( ball `  D
) S )  =  { z  e.  X  |  ( P D z )  <  S } )
37 blval 14976 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  P  e.  X  /\  S  e.  RR* )  ->  ( P ( ball `  C ) S )  =  { z  e.  X  |  ( P C z )  < 
S } )
383, 5, 1, 37syl3anc 1250 . 2  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  ( P ( ball `  C
) S )  =  { z  e.  X  |  ( P C z )  <  S } )
3932, 36, 383eqtr4d 2250 1  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  ( P ( ball `  D
) S )  =  ( P ( ball `  C ) S ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2178   {crab 2490   {cpr 3644   class class class wbr 4059    X. cxp 4691   -->wf 5286   ` cfv 5290  (class class class)co 5967    e. cmpo 5969  infcinf 7111   0cc0 7960   RR*cxr 8141    < clt 8142    <_ cle 8143   *Metcxmet 14413   ballcbl 14415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-map 6760  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-xneg 9929  df-xadd 9930  df-icc 10052  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-psmet 14420  df-xmet 14421  df-bl 14423
This theorem is referenced by:  bdmopn  15091
  Copyright terms: Public domain W3C validator