ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdbl Unicode version

Theorem bdbl 14823
Description: The standard bounded metric corresponding to  C generates the same balls as  C for radii less than  R. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
Hypothesis
Ref Expression
stdbdmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
Assertion
Ref Expression
bdbl  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  ( P ( ball `  D
) S )  =  ( P ( ball `  C ) S ) )
Distinct variable groups:    x, y, C   
x, P, y    x, R, y    x, X, y
Allowed substitution hints:    D( x, y)    S( x, y)

Proof of Theorem bdbl
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simpr2 1006 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  S  e.  RR* )
21adantr 276 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  S  e.  RR* )
3 simpl1 1002 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  C  e.  ( *Met `  X ) )
43adantr 276 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  C  e.  ( *Met `  X ) )
5 simpr1 1005 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  P  e.  X )
65adantr 276 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  P  e.  X )
7 simpr 110 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  z  e.  X )
8 xmetcl 14672 . . . . . 6  |-  ( ( C  e.  ( *Met `  X )  /\  P  e.  X  /\  z  e.  X
)  ->  ( P C z )  e. 
RR* )
94, 6, 7, 8syl3anc 1249 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( P C z )  e.  RR* )
10 simpll2 1039 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  R  e.  RR* )
11 xrminltinf 11454 . . . . 5  |-  ( ( S  e.  RR*  /\  ( P C z )  e. 
RR*  /\  R  e.  RR* )  ->  (inf ( { ( P C z ) ,  R } ,  RR* ,  <  )  <  S  <->  ( ( P C z )  < 
S  \/  R  < 
S ) ) )
122, 9, 10, 11syl3anc 1249 . . . 4  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  (inf ( { ( P C z ) ,  R } ,  RR* ,  <  )  < 
S  <->  ( ( P C z )  < 
S  \/  R  < 
S ) ) )
13 xmetf 14670 . . . . . . . . 9  |-  ( C  e.  ( *Met `  X )  ->  C : ( X  X.  X ) --> RR* )
14133ad2ant1 1020 . . . . . . . 8  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  C : ( X  X.  X ) -->
RR* )
1514adantr 276 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  C : ( X  X.  X ) --> RR* )
1615adantr 276 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  C : ( X  X.  X ) --> RR* )
17 stdbdmet.1 . . . . . . 7  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
1817bdmetval 14820 . . . . . 6  |-  ( ( ( C : ( X  X.  X ) -->
RR*  /\  R  e.  RR* )  /\  ( P  e.  X  /\  z  e.  X ) )  -> 
( P D z )  = inf ( { ( P C z ) ,  R } ,  RR* ,  <  )
)
1916, 10, 6, 7, 18syl22anc 1250 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( P D z )  = inf ( { ( P C z ) ,  R } ,  RR* ,  <  )
)
2019breq1d 4044 . . . 4  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( ( P D z )  <  S  <-> inf ( { ( P C z ) ,  R } ,  RR* ,  <  )  <  S ) )
21 simpr3 1007 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  S  <_  R )
22 simpl2 1003 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  R  e.  RR* )
23 xrlenlt 8108 . . . . . . . . 9  |-  ( ( S  e.  RR*  /\  R  e.  RR* )  ->  ( S  <_  R  <->  -.  R  <  S ) )
241, 22, 23syl2anc 411 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  ( S  <_  R  <->  -.  R  <  S ) )
2521, 24mpbid 147 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  -.  R  <  S )
26 biorf 745 . . . . . . 7  |-  ( -.  R  <  S  -> 
( ( P C z )  <  S  <->  ( R  <  S  \/  ( P C z )  <  S ) ) )
2725, 26syl 14 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  (
( P C z )  <  S  <->  ( R  <  S  \/  ( P C z )  < 
S ) ) )
28 orcom 729 . . . . . 6  |-  ( ( R  <  S  \/  ( P C z )  <  S )  <->  ( ( P C z )  < 
S  \/  R  < 
S ) )
2927, 28bitrdi 196 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  (
( P C z )  <  S  <->  ( ( P C z )  < 
S  \/  R  < 
S ) ) )
3029adantr 276 . . . 4  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( ( P C z )  <  S  <->  ( ( P C z )  <  S  \/  R  <  S ) ) )
3112, 20, 303bitr4d 220 . . 3  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( ( P D z )  <  S  <->  ( P C z )  <  S ) )
3231rabbidva 2751 . 2  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  { z  e.  X  |  ( P D z )  <  S }  =  { z  e.  X  |  ( P C z )  <  S } )
3317bdxmet 14821 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X
) )
3433adantr 276 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  D  e.  ( *Met `  X ) )
35 blval 14709 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  S  e.  RR* )  ->  ( P ( ball `  D ) S )  =  { z  e.  X  |  ( P D z )  < 
S } )
3634, 5, 1, 35syl3anc 1249 . 2  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  ( P ( ball `  D
) S )  =  { z  e.  X  |  ( P D z )  <  S } )
37 blval 14709 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  P  e.  X  /\  S  e.  RR* )  ->  ( P ( ball `  C ) S )  =  { z  e.  X  |  ( P C z )  < 
S } )
383, 5, 1, 37syl3anc 1249 . 2  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  ( P ( ball `  C
) S )  =  { z  e.  X  |  ( P C z )  <  S } )
3932, 36, 383eqtr4d 2239 1  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  ( P ( ball `  D
) S )  =  ( P ( ball `  C ) S ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   {crab 2479   {cpr 3624   class class class wbr 4034    X. cxp 4662   -->wf 5255   ` cfv 5259  (class class class)co 5925    e. cmpo 5927  infcinf 7058   0cc0 7896   RR*cxr 8077    < clt 8078    <_ cle 8079   *Metcxmet 14168   ballcbl 14170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-xneg 9864  df-xadd 9865  df-icc 9987  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-psmet 14175  df-xmet 14176  df-bl 14178
This theorem is referenced by:  bdmopn  14824
  Copyright terms: Public domain W3C validator