ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdbl Unicode version

Theorem bdbl 14671
Description: The standard bounded metric corresponding to  C generates the same balls as  C for radii less than  R. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
Hypothesis
Ref Expression
stdbdmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
Assertion
Ref Expression
bdbl  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  ( P ( ball `  D
) S )  =  ( P ( ball `  C ) S ) )
Distinct variable groups:    x, y, C   
x, P, y    x, R, y    x, X, y
Allowed substitution hints:    D( x, y)    S( x, y)

Proof of Theorem bdbl
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simpr2 1006 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  S  e.  RR* )
21adantr 276 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  S  e.  RR* )
3 simpl1 1002 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  C  e.  ( *Met `  X ) )
43adantr 276 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  C  e.  ( *Met `  X ) )
5 simpr1 1005 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  P  e.  X )
65adantr 276 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  P  e.  X )
7 simpr 110 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  z  e.  X )
8 xmetcl 14520 . . . . . 6  |-  ( ( C  e.  ( *Met `  X )  /\  P  e.  X  /\  z  e.  X
)  ->  ( P C z )  e. 
RR* )
94, 6, 7, 8syl3anc 1249 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( P C z )  e.  RR* )
10 simpll2 1039 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  R  e.  RR* )
11 xrminltinf 11415 . . . . 5  |-  ( ( S  e.  RR*  /\  ( P C z )  e. 
RR*  /\  R  e.  RR* )  ->  (inf ( { ( P C z ) ,  R } ,  RR* ,  <  )  <  S  <->  ( ( P C z )  < 
S  \/  R  < 
S ) ) )
122, 9, 10, 11syl3anc 1249 . . . 4  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  (inf ( { ( P C z ) ,  R } ,  RR* ,  <  )  < 
S  <->  ( ( P C z )  < 
S  \/  R  < 
S ) ) )
13 xmetf 14518 . . . . . . . . 9  |-  ( C  e.  ( *Met `  X )  ->  C : ( X  X.  X ) --> RR* )
14133ad2ant1 1020 . . . . . . . 8  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  C : ( X  X.  X ) -->
RR* )
1514adantr 276 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  C : ( X  X.  X ) --> RR* )
1615adantr 276 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  C : ( X  X.  X ) --> RR* )
17 stdbdmet.1 . . . . . . 7  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
1817bdmetval 14668 . . . . . 6  |-  ( ( ( C : ( X  X.  X ) -->
RR*  /\  R  e.  RR* )  /\  ( P  e.  X  /\  z  e.  X ) )  -> 
( P D z )  = inf ( { ( P C z ) ,  R } ,  RR* ,  <  )
)
1916, 10, 6, 7, 18syl22anc 1250 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( P D z )  = inf ( { ( P C z ) ,  R } ,  RR* ,  <  )
)
2019breq1d 4039 . . . 4  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( ( P D z )  <  S  <-> inf ( { ( P C z ) ,  R } ,  RR* ,  <  )  <  S ) )
21 simpr3 1007 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  S  <_  R )
22 simpl2 1003 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  R  e.  RR* )
23 xrlenlt 8084 . . . . . . . . 9  |-  ( ( S  e.  RR*  /\  R  e.  RR* )  ->  ( S  <_  R  <->  -.  R  <  S ) )
241, 22, 23syl2anc 411 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  ( S  <_  R  <->  -.  R  <  S ) )
2521, 24mpbid 147 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  -.  R  <  S )
26 biorf 745 . . . . . . 7  |-  ( -.  R  <  S  -> 
( ( P C z )  <  S  <->  ( R  <  S  \/  ( P C z )  <  S ) ) )
2725, 26syl 14 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  (
( P C z )  <  S  <->  ( R  <  S  \/  ( P C z )  < 
S ) ) )
28 orcom 729 . . . . . 6  |-  ( ( R  <  S  \/  ( P C z )  <  S )  <->  ( ( P C z )  < 
S  \/  R  < 
S ) )
2927, 28bitrdi 196 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  (
( P C z )  <  S  <->  ( ( P C z )  < 
S  \/  R  < 
S ) ) )
3029adantr 276 . . . 4  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( ( P C z )  <  S  <->  ( ( P C z )  <  S  \/  R  <  S ) ) )
3112, 20, 303bitr4d 220 . . 3  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  < 
R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  /\  z  e.  X )  ->  ( ( P D z )  <  S  <->  ( P C z )  <  S ) )
3231rabbidva 2748 . 2  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  { z  e.  X  |  ( P D z )  <  S }  =  { z  e.  X  |  ( P C z )  <  S } )
3317bdxmet 14669 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X
) )
3433adantr 276 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  D  e.  ( *Met `  X ) )
35 blval 14557 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  S  e.  RR* )  ->  ( P ( ball `  D ) S )  =  { z  e.  X  |  ( P D z )  < 
S } )
3634, 5, 1, 35syl3anc 1249 . 2  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  ( P ( ball `  D
) S )  =  { z  e.  X  |  ( P D z )  <  S } )
37 blval 14557 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  P  e.  X  /\  S  e.  RR* )  ->  ( P ( ball `  C ) S )  =  { z  e.  X  |  ( P C z )  < 
S } )
383, 5, 1, 37syl3anc 1249 . 2  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  ( P ( ball `  C
) S )  =  { z  e.  X  |  ( P C z )  <  S } )
3932, 36, 383eqtr4d 2236 1  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( P  e.  X  /\  S  e. 
RR*  /\  S  <_  R ) )  ->  ( P ( ball `  D
) S )  =  ( P ( ball `  C ) S ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164   {crab 2476   {cpr 3619   class class class wbr 4029    X. cxp 4657   -->wf 5250   ` cfv 5254  (class class class)co 5918    e. cmpo 5920  infcinf 7042   0cc0 7872   RR*cxr 8053    < clt 8054    <_ cle 8055   *Metcxmet 14032   ballcbl 14034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-map 6704  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-xneg 9838  df-xadd 9839  df-icc 9961  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-psmet 14039  df-xmet 14040  df-bl 14042
This theorem is referenced by:  bdmopn  14672
  Copyright terms: Public domain W3C validator