Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  speano5 Unicode version

Theorem speano5 13719
Description: Version of peano5 4572 when  A is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
speano5  |-  ( ( A  e.  V  /\  (/) 
e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem speano5
StepHypRef Expression
1 bj-omex 13717 . . . 4  |-  om  e.  _V
2 bj-inex 13682 . . . 4  |-  ( ( om  e.  _V  /\  A  e.  V )  ->  ( om  i^i  A
)  e.  _V )
31, 2mpan 421 . . 3  |-  ( A  e.  V  ->  ( om  i^i  A )  e. 
_V )
4 peano5set 13715 . . 3  |-  ( ( om  i^i  A )  e.  _V  ->  (
( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
) )
53, 4syl 14 . 2  |-  ( A  e.  V  ->  (
( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
) )
653impib 1190 1  |-  ( ( A  e.  V  /\  (/) 
e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 967    e. wcel 2135   A.wral 2442   _Vcvv 2724    i^i cin 3113    C_ wss 3114   (/)c0 3407   suc csuc 4340   omcom 4564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-nul 4105  ax-pr 4184  ax-un 4408  ax-bd0 13588  ax-bdan 13590  ax-bdor 13591  ax-bdex 13594  ax-bdeq 13595  ax-bdel 13596  ax-bdsb 13597  ax-bdsep 13659  ax-infvn 13716
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2726  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3408  df-sn 3579  df-pr 3580  df-uni 3787  df-int 3822  df-suc 4346  df-iom 4565  df-bdc 13616  df-bj-ind 13702
This theorem is referenced by:  findset  13720
  Copyright terms: Public domain W3C validator