Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  speano5 Unicode version

Theorem speano5 15182
Description: Version of peano5 4618 when  A is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
speano5  |-  ( ( A  e.  V  /\  (/) 
e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem speano5
StepHypRef Expression
1 bj-omex 15180 . . . 4  |-  om  e.  _V
2 bj-inex 15145 . . . 4  |-  ( ( om  e.  _V  /\  A  e.  V )  ->  ( om  i^i  A
)  e.  _V )
31, 2mpan 424 . . 3  |-  ( A  e.  V  ->  ( om  i^i  A )  e. 
_V )
4 peano5set 15178 . . 3  |-  ( ( om  i^i  A )  e.  _V  ->  (
( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
) )
53, 4syl 14 . 2  |-  ( A  e.  V  ->  (
( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
) )
653impib 1203 1  |-  ( ( A  e.  V  /\  (/) 
e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    e. wcel 2160   A.wral 2468   _Vcvv 2752    i^i cin 3143    C_ wss 3144   (/)c0 3437   suc csuc 4386   omcom 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-nul 4147  ax-pr 4230  ax-un 4454  ax-bd0 15051  ax-bdan 15053  ax-bdor 15054  ax-bdex 15057  ax-bdeq 15058  ax-bdel 15059  ax-bdsb 15060  ax-bdsep 15122  ax-infvn 15179
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-sn 3616  df-pr 3617  df-uni 3828  df-int 3863  df-suc 4392  df-iom 4611  df-bdc 15079  df-bj-ind 15165
This theorem is referenced by:  findset  15183
  Copyright terms: Public domain W3C validator