Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  speano5 Unicode version

Theorem speano5 14836
Description: Version of peano5 4599 when  A is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
speano5  |-  ( ( A  e.  V  /\  (/) 
e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem speano5
StepHypRef Expression
1 bj-omex 14834 . . . 4  |-  om  e.  _V
2 bj-inex 14799 . . . 4  |-  ( ( om  e.  _V  /\  A  e.  V )  ->  ( om  i^i  A
)  e.  _V )
31, 2mpan 424 . . 3  |-  ( A  e.  V  ->  ( om  i^i  A )  e. 
_V )
4 peano5set 14832 . . 3  |-  ( ( om  i^i  A )  e.  _V  ->  (
( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
) )
53, 4syl 14 . 2  |-  ( A  e.  V  ->  (
( (/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
) )
653impib 1201 1  |-  ( ( A  e.  V  /\  (/) 
e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    e. wcel 2148   A.wral 2455   _Vcvv 2739    i^i cin 3130    C_ wss 3131   (/)c0 3424   suc csuc 4367   omcom 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-nul 4131  ax-pr 4211  ax-un 4435  ax-bd0 14705  ax-bdan 14707  ax-bdor 14708  ax-bdex 14711  ax-bdeq 14712  ax-bdel 14713  ax-bdsb 14714  ax-bdsep 14776  ax-infvn 14833
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-sn 3600  df-pr 3601  df-uni 3812  df-int 3847  df-suc 4373  df-iom 4592  df-bdc 14733  df-bj-ind 14819
This theorem is referenced by:  findset  14837
  Copyright terms: Public domain W3C validator