ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breldm Unicode version

Theorem breldm 4815
Description: Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.)
Hypotheses
Ref Expression
opeldm.1  |-  A  e. 
_V
opeldm.2  |-  B  e. 
_V
Assertion
Ref Expression
breldm  |-  ( A R B  ->  A  e.  dom  R )

Proof of Theorem breldm
StepHypRef Expression
1 df-br 3990 . 2  |-  ( A R B  <->  <. A ,  B >.  e.  R )
2 opeldm.1 . . 3  |-  A  e. 
_V
3 opeldm.2 . . 3  |-  B  e. 
_V
42, 3opeldm 4814 . 2  |-  ( <. A ,  B >.  e.  R  ->  A  e.  dom  R )
51, 4sylbi 120 1  |-  ( A R B  ->  A  e.  dom  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141   _Vcvv 2730   <.cop 3586   class class class wbr 3989   dom cdm 4611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-dm 4621
This theorem is referenced by:  exse2  4985  funcnv3  5260  dff13  5747  reldmtpos  6232  rntpos  6236  dftpos4  6242  tpostpos  6243  iserd  6539  ntrivcvgap  11511
  Copyright terms: Public domain W3C validator