ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breldm Unicode version

Theorem breldm 4808
Description: Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.)
Hypotheses
Ref Expression
opeldm.1  |-  A  e. 
_V
opeldm.2  |-  B  e. 
_V
Assertion
Ref Expression
breldm  |-  ( A R B  ->  A  e.  dom  R )

Proof of Theorem breldm
StepHypRef Expression
1 df-br 3983 . 2  |-  ( A R B  <->  <. A ,  B >.  e.  R )
2 opeldm.1 . . 3  |-  A  e. 
_V
3 opeldm.2 . . 3  |-  B  e. 
_V
42, 3opeldm 4807 . 2  |-  ( <. A ,  B >.  e.  R  ->  A  e.  dom  R )
51, 4sylbi 120 1  |-  ( A R B  ->  A  e.  dom  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   _Vcvv 2726   <.cop 3579   class class class wbr 3982   dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-dm 4614
This theorem is referenced by:  exse2  4978  funcnv3  5250  dff13  5736  reldmtpos  6221  rntpos  6225  dftpos4  6231  tpostpos  6232  iserd  6527  ntrivcvgap  11489
  Copyright terms: Public domain W3C validator