ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeldm Unicode version

Theorem opeldm 4848
Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.)
Hypotheses
Ref Expression
opeldm.1  |-  A  e. 
_V
opeldm.2  |-  B  e. 
_V
Assertion
Ref Expression
opeldm  |-  ( <. A ,  B >.  e.  C  ->  A  e.  dom  C )

Proof of Theorem opeldm
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 opeldm.2 . . 3  |-  B  e. 
_V
2 opeq2 3794 . . . 4  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
32eleq1d 2258 . . 3  |-  ( y  =  B  ->  ( <. A ,  y >.  e.  C  <->  <. A ,  B >.  e.  C ) )
41, 3spcev 2847 . 2  |-  ( <. A ,  B >.  e.  C  ->  E. y <. A ,  y >.  e.  C )
5 opeldm.1 . . 3  |-  A  e. 
_V
65eldm2 4843 . 2  |-  ( A  e.  dom  C  <->  E. y <. A ,  y >.  e.  C )
74, 6sylibr 134 1  |-  ( <. A ,  B >.  e.  C  ->  A  e.  dom  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   E.wex 1503    e. wcel 2160   _Vcvv 2752   <.cop 3610   dom cdm 4644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-dm 4654
This theorem is referenced by:  breldm  4849  elreldm  4871  relssres  4963  iss  4971  imadmrn  4998  dfco2a  5147  funssres  5277  funun  5279  iinerm  6633
  Copyright terms: Public domain W3C validator