ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeldm Unicode version

Theorem opeldm 4900
Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.)
Hypotheses
Ref Expression
opeldm.1  |-  A  e. 
_V
opeldm.2  |-  B  e. 
_V
Assertion
Ref Expression
opeldm  |-  ( <. A ,  B >.  e.  C  ->  A  e.  dom  C )

Proof of Theorem opeldm
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 opeldm.2 . . 3  |-  B  e. 
_V
2 opeq2 3834 . . . 4  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
32eleq1d 2276 . . 3  |-  ( y  =  B  ->  ( <. A ,  y >.  e.  C  <->  <. A ,  B >.  e.  C ) )
41, 3spcev 2875 . 2  |-  ( <. A ,  B >.  e.  C  ->  E. y <. A ,  y >.  e.  C )
5 opeldm.1 . . 3  |-  A  e. 
_V
65eldm2 4895 . 2  |-  ( A  e.  dom  C  <->  E. y <. A ,  y >.  e.  C )
74, 6sylibr 134 1  |-  ( <. A ,  B >.  e.  C  ->  A  e.  dom  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   E.wex 1516    e. wcel 2178   _Vcvv 2776   <.cop 3646   dom cdm 4693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-dm 4703
This theorem is referenced by:  breldm  4901  elreldm  4923  relssres  5016  iss  5024  imadmrn  5051  dfco2a  5202  funssres  5332  funun  5334  iinerm  6717
  Copyright terms: Public domain W3C validator