| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeldm | Unicode version | ||
| Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.) |
| Ref | Expression |
|---|---|
| opeldm.1 |
|
| opeldm.2 |
|
| Ref | Expression |
|---|---|
| opeldm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeldm.2 |
. . 3
| |
| 2 | opeq2 3834 |
. . . 4
| |
| 3 | 2 | eleq1d 2276 |
. . 3
|
| 4 | 1, 3 | spcev 2875 |
. 2
|
| 5 | opeldm.1 |
. . 3
| |
| 6 | 5 | eldm2 4895 |
. 2
|
| 7 | 4, 6 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-dm 4703 |
| This theorem is referenced by: breldm 4901 elreldm 4923 relssres 5016 iss 5024 imadmrn 5051 dfco2a 5202 funssres 5332 funun 5334 iinerm 6717 |
| Copyright terms: Public domain | W3C validator |