Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rntpos | Unicode version |
Description: The range of tpos when is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
rntpos | tpos |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . . . . 5 | |
2 | 1 | elrn 4854 | . . . 4 tpos tpos |
3 | vex 2733 | . . . . . . . . 9 | |
4 | 3, 1 | breldm 4815 | . . . . . . . 8 tpos tpos |
5 | dmtpos 6235 | . . . . . . . . 9 tpos | |
6 | 5 | eleq2d 2240 | . . . . . . . 8 tpos |
7 | 4, 6 | syl5ib 153 | . . . . . . 7 tpos |
8 | relcnv 4989 | . . . . . . . 8 | |
9 | elrel 4713 | . . . . . . . 8 | |
10 | 8, 9 | mpan 422 | . . . . . . 7 |
11 | 7, 10 | syl6 33 | . . . . . 6 tpos |
12 | breq1 3992 | . . . . . . . . 9 tpos tpos | |
13 | vex 2733 | . . . . . . . . . 10 | |
14 | vex 2733 | . . . . . . . . . 10 | |
15 | brtposg 6233 | . . . . . . . . . 10 tpos | |
16 | 13, 14, 1, 15 | mp3an 1332 | . . . . . . . . 9 tpos |
17 | 12, 16 | bitrdi 195 | . . . . . . . 8 tpos |
18 | 14, 13 | opex 4214 | . . . . . . . . 9 |
19 | 18, 1 | brelrn 4844 | . . . . . . . 8 |
20 | 17, 19 | syl6bi 162 | . . . . . . 7 tpos |
21 | 20 | exlimivv 1889 | . . . . . 6 tpos |
22 | 11, 21 | syli 37 | . . . . 5 tpos |
23 | 22 | exlimdv 1812 | . . . 4 tpos |
24 | 2, 23 | syl5bi 151 | . . 3 tpos |
25 | 1 | elrn 4854 | . . . 4 |
26 | 3, 1 | breldm 4815 | . . . . . . 7 |
27 | elrel 4713 | . . . . . . . 8 | |
28 | 27 | ex 114 | . . . . . . 7 |
29 | 26, 28 | syl5 32 | . . . . . 6 |
30 | breq1 3992 | . . . . . . . . 9 | |
31 | 30, 16 | bitr4di 197 | . . . . . . . 8 tpos |
32 | 13, 14 | opex 4214 | . . . . . . . . 9 |
33 | 32, 1 | brelrn 4844 | . . . . . . . 8 tpos tpos |
34 | 31, 33 | syl6bi 162 | . . . . . . 7 tpos |
35 | 34 | exlimivv 1889 | . . . . . 6 tpos |
36 | 29, 35 | syli 37 | . . . . 5 tpos |
37 | 36 | exlimdv 1812 | . . . 4 tpos |
38 | 25, 37 | syl5bi 151 | . . 3 tpos |
39 | 24, 38 | impbid 128 | . 2 tpos |
40 | 39 | eqrdv 2168 | 1 tpos |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wex 1485 wcel 2141 cvv 2730 cop 3586 class class class wbr 3989 ccnv 4610 cdm 4611 crn 4612 wrel 4616 tpos ctpos 6223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-tpos 6224 |
This theorem is referenced by: tposfo2 6246 |
Copyright terms: Public domain | W3C validator |