ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rntpos Unicode version

Theorem rntpos 6310
Description: The range of tpos  F when  dom  F is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
rntpos  |-  ( Rel 
dom  F  ->  ran tpos  F  =  ran  F )

Proof of Theorem rntpos
Dummy variables  x  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . . 5  |-  x  e. 
_V
21elrn 4905 . . . 4  |-  ( x  e.  ran tpos  F  <->  E. y 
ytpos  F x )
3 vex 2763 . . . . . . . . 9  |-  y  e. 
_V
43, 1breldm 4866 . . . . . . . 8  |-  ( ytpos 
F x  ->  y  e.  dom tpos  F )
5 dmtpos 6309 . . . . . . . . 9  |-  ( Rel 
dom  F  ->  dom tpos  F  =  `' dom  F )
65eleq2d 2263 . . . . . . . 8  |-  ( Rel 
dom  F  ->  ( y  e.  dom tpos  F  <->  y  e.  `' dom  F ) )
74, 6imbitrid 154 . . . . . . 7  |-  ( Rel 
dom  F  ->  ( ytpos 
F x  ->  y  e.  `' dom  F ) )
8 relcnv 5043 . . . . . . . 8  |-  Rel  `' dom  F
9 elrel 4761 . . . . . . . 8  |-  ( ( Rel  `' dom  F  /\  y  e.  `' dom  F )  ->  E. w E. z  y  =  <. w ,  z >.
)
108, 9mpan 424 . . . . . . 7  |-  ( y  e.  `' dom  F  ->  E. w E. z 
y  =  <. w ,  z >. )
117, 10syl6 33 . . . . . 6  |-  ( Rel 
dom  F  ->  ( ytpos 
F x  ->  E. w E. z  y  =  <. w ,  z >.
) )
12 breq1 4032 . . . . . . . . 9  |-  ( y  =  <. w ,  z
>.  ->  ( ytpos  F x 
<-> 
<. w ,  z >.tpos  F x ) )
13 vex 2763 . . . . . . . . . 10  |-  w  e. 
_V
14 vex 2763 . . . . . . . . . 10  |-  z  e. 
_V
15 brtposg 6307 . . . . . . . . . 10  |-  ( ( w  e.  _V  /\  z  e.  _V  /\  x  e.  _V )  ->  ( <. w ,  z >.tpos  F x  <->  <. z ,  w >. F x ) )
1613, 14, 1, 15mp3an 1348 . . . . . . . . 9  |-  ( <.
w ,  z >.tpos  F x  <->  <. z ,  w >. F x )
1712, 16bitrdi 196 . . . . . . . 8  |-  ( y  =  <. w ,  z
>.  ->  ( ytpos  F x 
<-> 
<. z ,  w >. F x ) )
1814, 13opex 4258 . . . . . . . . 9  |-  <. z ,  w >.  e.  _V
1918, 1brelrn 4895 . . . . . . . 8  |-  ( <.
z ,  w >. F x  ->  x  e.  ran  F )
2017, 19biimtrdi 163 . . . . . . 7  |-  ( y  =  <. w ,  z
>.  ->  ( ytpos  F x  ->  x  e.  ran  F ) )
2120exlimivv 1908 . . . . . 6  |-  ( E. w E. z  y  =  <. w ,  z
>.  ->  ( ytpos  F x  ->  x  e.  ran  F ) )
2211, 21syli 37 . . . . 5  |-  ( Rel 
dom  F  ->  ( ytpos 
F x  ->  x  e.  ran  F ) )
2322exlimdv 1830 . . . 4  |-  ( Rel 
dom  F  ->  ( E. y  ytpos  F x  ->  x  e.  ran  F ) )
242, 23biimtrid 152 . . 3  |-  ( Rel 
dom  F  ->  ( x  e.  ran tpos  F  ->  x  e.  ran  F ) )
251elrn 4905 . . . 4  |-  ( x  e.  ran  F  <->  E. y 
y F x )
263, 1breldm 4866 . . . . . . 7  |-  ( y F x  ->  y  e.  dom  F )
27 elrel 4761 . . . . . . . 8  |-  ( ( Rel  dom  F  /\  y  e.  dom  F )  ->  E. z E. w  y  =  <. z ,  w >. )
2827ex 115 . . . . . . 7  |-  ( Rel 
dom  F  ->  ( y  e.  dom  F  ->  E. z E. w  y  =  <. z ,  w >. ) )
2926, 28syl5 32 . . . . . 6  |-  ( Rel 
dom  F  ->  ( y F x  ->  E. z E. w  y  =  <. z ,  w >. ) )
30 breq1 4032 . . . . . . . . 9  |-  ( y  =  <. z ,  w >.  ->  ( y F x  <->  <. z ,  w >. F x ) )
3130, 16bitr4di 198 . . . . . . . 8  |-  ( y  =  <. z ,  w >.  ->  ( y F x  <->  <. w ,  z
>.tpos  F x ) )
3213, 14opex 4258 . . . . . . . . 9  |-  <. w ,  z >.  e.  _V
3332, 1brelrn 4895 . . . . . . . 8  |-  ( <.
w ,  z >.tpos  F x  ->  x  e. 
ran tpos  F )
3431, 33biimtrdi 163 . . . . . . 7  |-  ( y  =  <. z ,  w >.  ->  ( y F x  ->  x  e.  ran tpos  F ) )
3534exlimivv 1908 . . . . . 6  |-  ( E. z E. w  y  =  <. z ,  w >.  ->  ( y F x  ->  x  e.  ran tpos  F ) )
3629, 35syli 37 . . . . 5  |-  ( Rel 
dom  F  ->  ( y F x  ->  x  e.  ran tpos  F ) )
3736exlimdv 1830 . . . 4  |-  ( Rel 
dom  F  ->  ( E. y  y F x  ->  x  e.  ran tpos  F ) )
3825, 37biimtrid 152 . . 3  |-  ( Rel 
dom  F  ->  ( x  e.  ran  F  ->  x  e.  ran tpos  F ) )
3924, 38impbid 129 . 2  |-  ( Rel 
dom  F  ->  ( x  e.  ran tpos  F  <->  x  e.  ran  F ) )
4039eqrdv 2191 1  |-  ( Rel 
dom  F  ->  ran tpos  F  =  ran  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   _Vcvv 2760   <.cop 3621   class class class wbr 4029   `'ccnv 4658   dom cdm 4659   ran crn 4660   Rel wrel 4664  tpos ctpos 6297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-tpos 6298
This theorem is referenced by:  tposfo2  6320
  Copyright terms: Public domain W3C validator