Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rntpos | Unicode version |
Description: The range of tpos when is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
rntpos | tpos |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . . 5 | |
2 | 1 | elrn 4847 | . . . 4 tpos tpos |
3 | vex 2729 | . . . . . . . . 9 | |
4 | 3, 1 | breldm 4808 | . . . . . . . 8 tpos tpos |
5 | dmtpos 6224 | . . . . . . . . 9 tpos | |
6 | 5 | eleq2d 2236 | . . . . . . . 8 tpos |
7 | 4, 6 | syl5ib 153 | . . . . . . 7 tpos |
8 | relcnv 4982 | . . . . . . . 8 | |
9 | elrel 4706 | . . . . . . . 8 | |
10 | 8, 9 | mpan 421 | . . . . . . 7 |
11 | 7, 10 | syl6 33 | . . . . . 6 tpos |
12 | breq1 3985 | . . . . . . . . 9 tpos tpos | |
13 | vex 2729 | . . . . . . . . . 10 | |
14 | vex 2729 | . . . . . . . . . 10 | |
15 | brtposg 6222 | . . . . . . . . . 10 tpos | |
16 | 13, 14, 1, 15 | mp3an 1327 | . . . . . . . . 9 tpos |
17 | 12, 16 | bitrdi 195 | . . . . . . . 8 tpos |
18 | 14, 13 | opex 4207 | . . . . . . . . 9 |
19 | 18, 1 | brelrn 4837 | . . . . . . . 8 |
20 | 17, 19 | syl6bi 162 | . . . . . . 7 tpos |
21 | 20 | exlimivv 1884 | . . . . . 6 tpos |
22 | 11, 21 | syli 37 | . . . . 5 tpos |
23 | 22 | exlimdv 1807 | . . . 4 tpos |
24 | 2, 23 | syl5bi 151 | . . 3 tpos |
25 | 1 | elrn 4847 | . . . 4 |
26 | 3, 1 | breldm 4808 | . . . . . . 7 |
27 | elrel 4706 | . . . . . . . 8 | |
28 | 27 | ex 114 | . . . . . . 7 |
29 | 26, 28 | syl5 32 | . . . . . 6 |
30 | breq1 3985 | . . . . . . . . 9 | |
31 | 30, 16 | bitr4di 197 | . . . . . . . 8 tpos |
32 | 13, 14 | opex 4207 | . . . . . . . . 9 |
33 | 32, 1 | brelrn 4837 | . . . . . . . 8 tpos tpos |
34 | 31, 33 | syl6bi 162 | . . . . . . 7 tpos |
35 | 34 | exlimivv 1884 | . . . . . 6 tpos |
36 | 29, 35 | syli 37 | . . . . 5 tpos |
37 | 36 | exlimdv 1807 | . . . 4 tpos |
38 | 25, 37 | syl5bi 151 | . . 3 tpos |
39 | 24, 38 | impbid 128 | . 2 tpos |
40 | 39 | eqrdv 2163 | 1 tpos |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wex 1480 wcel 2136 cvv 2726 cop 3579 class class class wbr 3982 ccnv 4603 cdm 4604 crn 4605 wrel 4609 tpos ctpos 6212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-tpos 6213 |
This theorem is referenced by: tposfo2 6235 |
Copyright terms: Public domain | W3C validator |