| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rntpos | Unicode version | ||
| Description: The range of tpos |
| Ref | Expression |
|---|---|
| rntpos |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 |
. . . . 5
| |
| 2 | 1 | elrn 4930 |
. . . 4
|
| 3 | vex 2776 |
. . . . . . . . 9
| |
| 4 | 3, 1 | breldm 4891 |
. . . . . . . 8
|
| 5 | dmtpos 6355 |
. . . . . . . . 9
| |
| 6 | 5 | eleq2d 2276 |
. . . . . . . 8
|
| 7 | 4, 6 | imbitrid 154 |
. . . . . . 7
|
| 8 | relcnv 5069 |
. . . . . . . 8
| |
| 9 | elrel 4785 |
. . . . . . . 8
| |
| 10 | 8, 9 | mpan 424 |
. . . . . . 7
|
| 11 | 7, 10 | syl6 33 |
. . . . . 6
|
| 12 | breq1 4054 |
. . . . . . . . 9
| |
| 13 | vex 2776 |
. . . . . . . . . 10
| |
| 14 | vex 2776 |
. . . . . . . . . 10
| |
| 15 | brtposg 6353 |
. . . . . . . . . 10
| |
| 16 | 13, 14, 1, 15 | mp3an 1350 |
. . . . . . . . 9
|
| 17 | 12, 16 | bitrdi 196 |
. . . . . . . 8
|
| 18 | 14, 13 | opex 4281 |
. . . . . . . . 9
|
| 19 | 18, 1 | brelrn 4920 |
. . . . . . . 8
|
| 20 | 17, 19 | biimtrdi 163 |
. . . . . . 7
|
| 21 | 20 | exlimivv 1921 |
. . . . . 6
|
| 22 | 11, 21 | syli 37 |
. . . . 5
|
| 23 | 22 | exlimdv 1843 |
. . . 4
|
| 24 | 2, 23 | biimtrid 152 |
. . 3
|
| 25 | 1 | elrn 4930 |
. . . 4
|
| 26 | 3, 1 | breldm 4891 |
. . . . . . 7
|
| 27 | elrel 4785 |
. . . . . . . 8
| |
| 28 | 27 | ex 115 |
. . . . . . 7
|
| 29 | 26, 28 | syl5 32 |
. . . . . 6
|
| 30 | breq1 4054 |
. . . . . . . . 9
| |
| 31 | 30, 16 | bitr4di 198 |
. . . . . . . 8
|
| 32 | 13, 14 | opex 4281 |
. . . . . . . . 9
|
| 33 | 32, 1 | brelrn 4920 |
. . . . . . . 8
|
| 34 | 31, 33 | biimtrdi 163 |
. . . . . . 7
|
| 35 | 34 | exlimivv 1921 |
. . . . . 6
|
| 36 | 29, 35 | syli 37 |
. . . . 5
|
| 37 | 36 | exlimdv 1843 |
. . . 4
|
| 38 | 25, 37 | biimtrid 152 |
. . 3
|
| 39 | 24, 38 | impbid 129 |
. 2
|
| 40 | 39 | eqrdv 2204 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-tpos 6344 |
| This theorem is referenced by: tposfo2 6366 |
| Copyright terms: Public domain | W3C validator |