Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rntpos | Unicode version |
Description: The range of tpos when is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
rntpos | tpos |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2715 | . . . . 5 | |
2 | 1 | elrn 4828 | . . . 4 tpos tpos |
3 | vex 2715 | . . . . . . . . 9 | |
4 | 3, 1 | breldm 4789 | . . . . . . . 8 tpos tpos |
5 | dmtpos 6200 | . . . . . . . . 9 tpos | |
6 | 5 | eleq2d 2227 | . . . . . . . 8 tpos |
7 | 4, 6 | syl5ib 153 | . . . . . . 7 tpos |
8 | relcnv 4963 | . . . . . . . 8 | |
9 | elrel 4687 | . . . . . . . 8 | |
10 | 8, 9 | mpan 421 | . . . . . . 7 |
11 | 7, 10 | syl6 33 | . . . . . 6 tpos |
12 | breq1 3968 | . . . . . . . . 9 tpos tpos | |
13 | vex 2715 | . . . . . . . . . 10 | |
14 | vex 2715 | . . . . . . . . . 10 | |
15 | brtposg 6198 | . . . . . . . . . 10 tpos | |
16 | 13, 14, 1, 15 | mp3an 1319 | . . . . . . . . 9 tpos |
17 | 12, 16 | bitrdi 195 | . . . . . . . 8 tpos |
18 | 14, 13 | opex 4189 | . . . . . . . . 9 |
19 | 18, 1 | brelrn 4818 | . . . . . . . 8 |
20 | 17, 19 | syl6bi 162 | . . . . . . 7 tpos |
21 | 20 | exlimivv 1876 | . . . . . 6 tpos |
22 | 11, 21 | syli 37 | . . . . 5 tpos |
23 | 22 | exlimdv 1799 | . . . 4 tpos |
24 | 2, 23 | syl5bi 151 | . . 3 tpos |
25 | 1 | elrn 4828 | . . . 4 |
26 | 3, 1 | breldm 4789 | . . . . . . 7 |
27 | elrel 4687 | . . . . . . . 8 | |
28 | 27 | ex 114 | . . . . . . 7 |
29 | 26, 28 | syl5 32 | . . . . . 6 |
30 | breq1 3968 | . . . . . . . . 9 | |
31 | 30, 16 | bitr4di 197 | . . . . . . . 8 tpos |
32 | 13, 14 | opex 4189 | . . . . . . . . 9 |
33 | 32, 1 | brelrn 4818 | . . . . . . . 8 tpos tpos |
34 | 31, 33 | syl6bi 162 | . . . . . . 7 tpos |
35 | 34 | exlimivv 1876 | . . . . . 6 tpos |
36 | 29, 35 | syli 37 | . . . . 5 tpos |
37 | 36 | exlimdv 1799 | . . . 4 tpos |
38 | 25, 37 | syl5bi 151 | . . 3 tpos |
39 | 24, 38 | impbid 128 | . 2 tpos |
40 | 39 | eqrdv 2155 | 1 tpos |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1335 wex 1472 wcel 2128 cvv 2712 cop 3563 class class class wbr 3965 ccnv 4584 cdm 4585 crn 4586 wrel 4590 tpos ctpos 6188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-fv 5177 df-tpos 6189 |
This theorem is referenced by: tposfo2 6211 |
Copyright terms: Public domain | W3C validator |