| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breldm | GIF version | ||
| Description: Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.) |
| Ref | Expression |
|---|---|
| opeldm.1 | ⊢ 𝐴 ∈ V |
| opeldm.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| breldm | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4084 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | opeldm.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | opeldm.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | opeldm 4926 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 → 𝐴 ∈ dom 𝑅) |
| 5 | 1, 4 | sylbi 121 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 Vcvv 2799 〈cop 3669 class class class wbr 4083 dom cdm 4719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-dm 4729 |
| This theorem is referenced by: exse2 5102 funcnv3 5383 dff13 5892 reldmtpos 6399 rntpos 6403 dftpos4 6409 tpostpos 6410 iserd 6706 ntrivcvgap 12059 |
| Copyright terms: Public domain | W3C validator |