Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breldm | GIF version |
Description: Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.) |
Ref | Expression |
---|---|
opeldm.1 | ⊢ 𝐴 ∈ V |
opeldm.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
breldm | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3999 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | opeldm.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | opeldm.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | opeldm 4823 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 → 𝐴 ∈ dom 𝑅) |
5 | 1, 4 | sylbi 121 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2146 Vcvv 2735 〈cop 3592 class class class wbr 3998 dom cdm 4620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-dm 4630 |
This theorem is referenced by: exse2 4995 funcnv3 5270 dff13 5759 reldmtpos 6244 rntpos 6248 dftpos4 6254 tpostpos 6255 iserd 6551 ntrivcvgap 11524 |
Copyright terms: Public domain | W3C validator |