ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrivcvgap Unicode version

Theorem ntrivcvgap 11732
Description: A non-trivially converging infinite product converges. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvg.1  |-  Z  =  ( ZZ>= `  M )
ntrivcvgap.2  |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y ) )
ntrivcvg.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
Assertion
Ref Expression
ntrivcvgap  |-  ( ph  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  )
Distinct variable groups:    k, F, n, y    k, M, n, y    k, Z, y    ph, k, n, y
Allowed substitution hint:    Z( n)

Proof of Theorem ntrivcvgap
StepHypRef Expression
1 ntrivcvgap.2 . 2  |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y ) )
2 uzm1 9651 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  =  M  \/  (
n  -  1 )  e.  ( ZZ>= `  M
) ) )
3 ntrivcvg.1 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
42, 3eleq2s 2291 . . . . . . . 8  |-  ( n  e.  Z  ->  (
n  =  M  \/  ( n  -  1
)  e.  ( ZZ>= `  M ) ) )
54ad2antlr 489 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  ( n  =  M  \/  ( n  -  1 )  e.  ( ZZ>= `  M )
) )
6 seqeq1 10561 . . . . . . . . . . 11  |-  ( n  =  M  ->  seq n (  x.  ,  F )  =  seq M (  x.  ,  F ) )
76breq1d 4044 . . . . . . . . . 10  |-  ( n  =  M  ->  (  seq n (  x.  ,  F )  ~~>  y  <->  seq M (  x.  ,  F )  ~~>  y ) )
8 seqex 10560 . . . . . . . . . . 11  |-  seq M
(  x.  ,  F
)  e.  _V
9 vex 2766 . . . . . . . . . . 11  |-  y  e. 
_V
108, 9breldm 4871 . . . . . . . . . 10  |-  (  seq M (  x.  ,  F )  ~~>  y  ->  seq M (  x.  ,  F )  e.  dom  ~~>  )
117, 10biimtrdi 163 . . . . . . . . 9  |-  ( n  =  M  ->  (  seq n (  x.  ,  F )  ~~>  y  ->  seq M (  x.  ,  F )  e.  dom  ~~>  ) )
1211adantld 278 . . . . . . . 8  |-  ( n  =  M  ->  (
( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  ) )
13 eluzel2 9625 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
1413, 3eleq2s 2291 . . . . . . . . . . . . . . . 16  |-  ( n  e.  Z  ->  M  e.  ZZ )
1514ad3antlr 493 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  M  e.  ZZ )
16 ntrivcvg.3 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
1716ad5ant15 521 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  - 
1 )  e.  Z
)  /\  seq n
(  x.  ,  F
)  ~~>  y )  /\  k  e.  Z )  ->  ( F `  k
)  e.  CC )
183, 15, 17prodf 11722 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F ) : Z --> CC )
19 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  (
n  -  1 )  e.  Z )
2018, 19ffvelcdmd 5701 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  (  seq M (  x.  ,  F ) `  (
n  -  1 ) )  e.  CC )
21 climcl 11466 . . . . . . . . . . . . . 14  |-  (  seq n (  x.  ,  F )  ~~>  y  -> 
y  e.  CC )
2221adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  y  e.  CC )
2320, 22mulcld 8066 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  (
(  seq M (  x.  ,  F ) `  ( n  -  1
) )  x.  y
)  e.  CC )
24 uzssz 9640 . . . . . . . . . . . . . . . . . . . 20  |-  ( ZZ>= `  M )  C_  ZZ
253, 24eqsstri 3216 . . . . . . . . . . . . . . . . . . 19  |-  Z  C_  ZZ
26 simplr 528 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  ->  n  e.  Z )
2725, 26sselid 3182 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  ->  n  e.  ZZ )
2827zcnd 9468 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  ->  n  e.  CC )
29 1cnd 8061 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  -> 
1  e.  CC )
3028, 29npcand 8360 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  -> 
( ( n  - 
1 )  +  1 )  =  n )
3130seqeq1d 10564 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  ->  seq ( ( n  - 
1 )  +  1 ) (  x.  ,  F )  =  seq n (  x.  ,  F ) )
3231breq1d 4044 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  -> 
(  seq ( ( n  -  1 )  +  1 ) (  x.  ,  F )  ~~>  y  <->  seq n
(  x.  ,  F
)  ~~>  y ) )
3332biimpar 297 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq ( ( n  - 
1 )  +  1 ) (  x.  ,  F )  ~~>  y )
343, 19, 17, 33clim2prod 11723 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  ~~>  ( (  seq M (  x.  ,  F ) `  ( n  -  1
) )  x.  y
) )
35 breldmg 4873 . . . . . . . . . . . 12  |-  ( (  seq M (  x.  ,  F )  e. 
_V  /\  ( (  seq M (  x.  ,  F ) `  (
n  -  1 ) )  x.  y )  e.  CC  /\  seq M (  x.  ,  F )  ~~>  ( (  seq M (  x.  ,  F ) `  ( n  -  1
) )  x.  y
) )  ->  seq M (  x.  ,  F )  e.  dom  ~~>  )
368, 23, 34, 35mp3an2i 1353 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e.  dom  ~~>  )
3736an32s 568 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  /\  ( n  - 
1 )  e.  Z
)  ->  seq M (  x.  ,  F )  e.  dom  ~~>  )
3837expcom 116 . . . . . . . . 9  |-  ( ( n  -  1 )  e.  Z  ->  (
( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  ) )
393eqcomi 2200 . . . . . . . . 9  |-  ( ZZ>= `  M )  =  Z
4038, 39eleq2s 2291 . . . . . . . 8  |-  ( ( n  -  1 )  e.  ( ZZ>= `  M
)  ->  ( (
( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  ) )
4112, 40jaoi 717 . . . . . . 7  |-  ( ( n  =  M  \/  ( n  -  1
)  e.  ( ZZ>= `  M ) )  -> 
( ( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e.  dom  ~~>  ) )
425, 41mpcom 36 . . . . . 6  |-  ( ( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  )
4342ex 115 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  (  seq n (  x.  ,  F )  ~~>  y  ->  seq M (  x.  ,  F )  e.  dom  ~~>  ) )
4443adantld 278 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  (
( y #  0  /\ 
seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  ) )
4544exlimdv 1833 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  ( E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e.  dom  ~~>  ) )
4645rexlimdva 2614 . 2  |-  ( ph  ->  ( E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  ) )
471, 46mpd 13 1  |-  ( ph  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364   E.wex 1506    e. wcel 2167   E.wrex 2476   _Vcvv 2763   class class class wbr 4034   dom cdm 4664   ` cfv 5259  (class class class)co 5925   CCcc 7896   0cc0 7898   1c1 7899    + caddc 7901    x. cmul 7903    - cmin 8216   # cap 8627   ZZcz 9345   ZZ>=cuz 9620    seqcseq 10558    ~~> cli 11462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-rp 9748  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator