ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrivcvgap Unicode version

Theorem ntrivcvgap 11974
Description: A non-trivially converging infinite product converges. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvg.1  |-  Z  =  ( ZZ>= `  M )
ntrivcvgap.2  |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y ) )
ntrivcvg.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
Assertion
Ref Expression
ntrivcvgap  |-  ( ph  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  )
Distinct variable groups:    k, F, n, y    k, M, n, y    k, Z, y    ph, k, n, y
Allowed substitution hint:    Z( n)

Proof of Theorem ntrivcvgap
StepHypRef Expression
1 ntrivcvgap.2 . 2  |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y ) )
2 uzm1 9714 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  =  M  \/  (
n  -  1 )  e.  ( ZZ>= `  M
) ) )
3 ntrivcvg.1 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
42, 3eleq2s 2302 . . . . . . . 8  |-  ( n  e.  Z  ->  (
n  =  M  \/  ( n  -  1
)  e.  ( ZZ>= `  M ) ) )
54ad2antlr 489 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  ( n  =  M  \/  ( n  -  1 )  e.  ( ZZ>= `  M )
) )
6 seqeq1 10632 . . . . . . . . . . 11  |-  ( n  =  M  ->  seq n (  x.  ,  F )  =  seq M (  x.  ,  F ) )
76breq1d 4069 . . . . . . . . . 10  |-  ( n  =  M  ->  (  seq n (  x.  ,  F )  ~~>  y  <->  seq M (  x.  ,  F )  ~~>  y ) )
8 seqex 10631 . . . . . . . . . . 11  |-  seq M
(  x.  ,  F
)  e.  _V
9 vex 2779 . . . . . . . . . . 11  |-  y  e. 
_V
108, 9breldm 4901 . . . . . . . . . 10  |-  (  seq M (  x.  ,  F )  ~~>  y  ->  seq M (  x.  ,  F )  e.  dom  ~~>  )
117, 10biimtrdi 163 . . . . . . . . 9  |-  ( n  =  M  ->  (  seq n (  x.  ,  F )  ~~>  y  ->  seq M (  x.  ,  F )  e.  dom  ~~>  ) )
1211adantld 278 . . . . . . . 8  |-  ( n  =  M  ->  (
( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  ) )
13 eluzel2 9688 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
1413, 3eleq2s 2302 . . . . . . . . . . . . . . . 16  |-  ( n  e.  Z  ->  M  e.  ZZ )
1514ad3antlr 493 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  M  e.  ZZ )
16 ntrivcvg.3 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
1716ad5ant15 521 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  - 
1 )  e.  Z
)  /\  seq n
(  x.  ,  F
)  ~~>  y )  /\  k  e.  Z )  ->  ( F `  k
)  e.  CC )
183, 15, 17prodf 11964 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F ) : Z --> CC )
19 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  (
n  -  1 )  e.  Z )
2018, 19ffvelcdmd 5739 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  (  seq M (  x.  ,  F ) `  (
n  -  1 ) )  e.  CC )
21 climcl 11708 . . . . . . . . . . . . . 14  |-  (  seq n (  x.  ,  F )  ~~>  y  -> 
y  e.  CC )
2221adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  y  e.  CC )
2320, 22mulcld 8128 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  (
(  seq M (  x.  ,  F ) `  ( n  -  1
) )  x.  y
)  e.  CC )
24 uzssz 9703 . . . . . . . . . . . . . . . . . . . 20  |-  ( ZZ>= `  M )  C_  ZZ
253, 24eqsstri 3233 . . . . . . . . . . . . . . . . . . 19  |-  Z  C_  ZZ
26 simplr 528 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  ->  n  e.  Z )
2725, 26sselid 3199 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  ->  n  e.  ZZ )
2827zcnd 9531 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  ->  n  e.  CC )
29 1cnd 8123 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  -> 
1  e.  CC )
3028, 29npcand 8422 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  -> 
( ( n  - 
1 )  +  1 )  =  n )
3130seqeq1d 10635 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  ->  seq ( ( n  - 
1 )  +  1 ) (  x.  ,  F )  =  seq n (  x.  ,  F ) )
3231breq1d 4069 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  -> 
(  seq ( ( n  -  1 )  +  1 ) (  x.  ,  F )  ~~>  y  <->  seq n
(  x.  ,  F
)  ~~>  y ) )
3332biimpar 297 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq ( ( n  - 
1 )  +  1 ) (  x.  ,  F )  ~~>  y )
343, 19, 17, 33clim2prod 11965 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  ~~>  ( (  seq M (  x.  ,  F ) `  ( n  -  1
) )  x.  y
) )
35 breldmg 4903 . . . . . . . . . . . 12  |-  ( (  seq M (  x.  ,  F )  e. 
_V  /\  ( (  seq M (  x.  ,  F ) `  (
n  -  1 ) )  x.  y )  e.  CC  /\  seq M (  x.  ,  F )  ~~>  ( (  seq M (  x.  ,  F ) `  ( n  -  1
) )  x.  y
) )  ->  seq M (  x.  ,  F )  e.  dom  ~~>  )
368, 23, 34, 35mp3an2i 1355 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e.  dom  ~~>  )
3736an32s 568 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  /\  ( n  - 
1 )  e.  Z
)  ->  seq M (  x.  ,  F )  e.  dom  ~~>  )
3837expcom 116 . . . . . . . . 9  |-  ( ( n  -  1 )  e.  Z  ->  (
( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  ) )
393eqcomi 2211 . . . . . . . . 9  |-  ( ZZ>= `  M )  =  Z
4038, 39eleq2s 2302 . . . . . . . 8  |-  ( ( n  -  1 )  e.  ( ZZ>= `  M
)  ->  ( (
( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  ) )
4112, 40jaoi 718 . . . . . . 7  |-  ( ( n  =  M  \/  ( n  -  1
)  e.  ( ZZ>= `  M ) )  -> 
( ( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e.  dom  ~~>  ) )
425, 41mpcom 36 . . . . . 6  |-  ( ( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  )
4342ex 115 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  (  seq n (  x.  ,  F )  ~~>  y  ->  seq M (  x.  ,  F )  e.  dom  ~~>  ) )
4443adantld 278 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  (
( y #  0  /\ 
seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  ) )
4544exlimdv 1843 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  ( E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e.  dom  ~~>  ) )
4645rexlimdva 2625 . 2  |-  ( ph  ->  ( E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  ) )
471, 46mpd 13 1  |-  ( ph  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373   E.wex 1516    e. wcel 2178   E.wrex 2487   _Vcvv 2776   class class class wbr 4059   dom cdm 4693   ` cfv 5290  (class class class)co 5967   CCcc 7958   0cc0 7960   1c1 7961    + caddc 7963    x. cmul 7965    - cmin 8278   # cap 8689   ZZcz 9407   ZZ>=cuz 9683    seqcseq 10629    ~~> cli 11704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator