ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrivcvgap Unicode version

Theorem ntrivcvgap 11524
Description: A non-trivially converging infinite product converges. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvg.1  |-  Z  =  ( ZZ>= `  M )
ntrivcvgap.2  |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y ) )
ntrivcvg.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
Assertion
Ref Expression
ntrivcvgap  |-  ( ph  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  )
Distinct variable groups:    k, F, n, y    k, M, n, y    k, Z, y    ph, k, n, y
Allowed substitution hint:    Z( n)

Proof of Theorem ntrivcvgap
StepHypRef Expression
1 ntrivcvgap.2 . 2  |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y ) )
2 uzm1 9531 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( n  =  M  \/  (
n  -  1 )  e.  ( ZZ>= `  M
) ) )
3 ntrivcvg.1 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
42, 3eleq2s 2270 . . . . . . . 8  |-  ( n  e.  Z  ->  (
n  =  M  \/  ( n  -  1
)  e.  ( ZZ>= `  M ) ) )
54ad2antlr 489 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  ( n  =  M  \/  ( n  -  1 )  e.  ( ZZ>= `  M )
) )
6 seqeq1 10418 . . . . . . . . . . 11  |-  ( n  =  M  ->  seq n (  x.  ,  F )  =  seq M (  x.  ,  F ) )
76breq1d 4008 . . . . . . . . . 10  |-  ( n  =  M  ->  (  seq n (  x.  ,  F )  ~~>  y  <->  seq M (  x.  ,  F )  ~~>  y ) )
8 seqex 10417 . . . . . . . . . . 11  |-  seq M
(  x.  ,  F
)  e.  _V
9 vex 2738 . . . . . . . . . . 11  |-  y  e. 
_V
108, 9breldm 4824 . . . . . . . . . 10  |-  (  seq M (  x.  ,  F )  ~~>  y  ->  seq M (  x.  ,  F )  e.  dom  ~~>  )
117, 10syl6bi 163 . . . . . . . . 9  |-  ( n  =  M  ->  (  seq n (  x.  ,  F )  ~~>  y  ->  seq M (  x.  ,  F )  e.  dom  ~~>  ) )
1211adantld 278 . . . . . . . 8  |-  ( n  =  M  ->  (
( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  ) )
13 eluzel2 9506 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
1413, 3eleq2s 2270 . . . . . . . . . . . . . . . 16  |-  ( n  e.  Z  ->  M  e.  ZZ )
1514ad3antlr 493 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  M  e.  ZZ )
16 ntrivcvg.3 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
1716ad5ant15 521 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  - 
1 )  e.  Z
)  /\  seq n
(  x.  ,  F
)  ~~>  y )  /\  k  e.  Z )  ->  ( F `  k
)  e.  CC )
183, 15, 17prodf 11514 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F ) : Z --> CC )
19 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  (
n  -  1 )  e.  Z )
2018, 19ffvelcdmd 5644 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  (  seq M (  x.  ,  F ) `  (
n  -  1 ) )  e.  CC )
21 climcl 11258 . . . . . . . . . . . . . 14  |-  (  seq n (  x.  ,  F )  ~~>  y  -> 
y  e.  CC )
2221adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  y  e.  CC )
2320, 22mulcld 7952 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  (
(  seq M (  x.  ,  F ) `  ( n  -  1
) )  x.  y
)  e.  CC )
24 uzssz 9520 . . . . . . . . . . . . . . . . . . . 20  |-  ( ZZ>= `  M )  C_  ZZ
253, 24eqsstri 3185 . . . . . . . . . . . . . . . . . . 19  |-  Z  C_  ZZ
26 simplr 528 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  ->  n  e.  Z )
2725, 26sselid 3151 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  ->  n  e.  ZZ )
2827zcnd 9349 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  ->  n  e.  CC )
29 1cnd 7948 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  -> 
1  e.  CC )
3028, 29npcand 8246 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  -> 
( ( n  - 
1 )  +  1 )  =  n )
3130seqeq1d 10421 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  ->  seq ( ( n  - 
1 )  +  1 ) (  x.  ,  F )  =  seq n (  x.  ,  F ) )
3231breq1d 4008 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  Z )  /\  (
n  -  1 )  e.  Z )  -> 
(  seq ( ( n  -  1 )  +  1 ) (  x.  ,  F )  ~~>  y  <->  seq n
(  x.  ,  F
)  ~~>  y ) )
3332biimpar 297 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq ( ( n  - 
1 )  +  1 ) (  x.  ,  F )  ~~>  y )
343, 19, 17, 33clim2prod 11515 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  ~~>  ( (  seq M (  x.  ,  F ) `  ( n  -  1
) )  x.  y
) )
35 breldmg 4826 . . . . . . . . . . . 12  |-  ( (  seq M (  x.  ,  F )  e. 
_V  /\  ( (  seq M (  x.  ,  F ) `  (
n  -  1 ) )  x.  y )  e.  CC  /\  seq M (  x.  ,  F )  ~~>  ( (  seq M (  x.  ,  F ) `  ( n  -  1
) )  x.  y
) )  ->  seq M (  x.  ,  F )  e.  dom  ~~>  )
368, 23, 34, 35mp3an2i 1342 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  ( n  -  1 )  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e.  dom  ~~>  )
3736an32s 568 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  /\  ( n  - 
1 )  e.  Z
)  ->  seq M (  x.  ,  F )  e.  dom  ~~>  )
3837expcom 116 . . . . . . . . 9  |-  ( ( n  -  1 )  e.  Z  ->  (
( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  ) )
393eqcomi 2179 . . . . . . . . 9  |-  ( ZZ>= `  M )  =  Z
4038, 39eleq2s 2270 . . . . . . . 8  |-  ( ( n  -  1 )  e.  ( ZZ>= `  M
)  ->  ( (
( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  ) )
4112, 40jaoi 716 . . . . . . 7  |-  ( ( n  =  M  \/  ( n  -  1
)  e.  ( ZZ>= `  M ) )  -> 
( ( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e.  dom  ~~>  ) )
425, 41mpcom 36 . . . . . 6  |-  ( ( ( ph  /\  n  e.  Z )  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  )
4342ex 115 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  (  seq n (  x.  ,  F )  ~~>  y  ->  seq M (  x.  ,  F )  e.  dom  ~~>  ) )
4443adantld 278 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  (
( y #  0  /\ 
seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  ) )
4544exlimdv 1817 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  ( E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e.  dom  ~~>  ) )
4645rexlimdva 2592 . 2  |-  ( ph  ->  ( E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  ) )
471, 46mpd 13 1  |-  ( ph  ->  seq M (  x.  ,  F )  e. 
dom 
~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708    = wceq 1353   E.wex 1490    e. wcel 2146   E.wrex 2454   _Vcvv 2735   class class class wbr 3998   dom cdm 4620   ` cfv 5208  (class class class)co 5865   CCcc 7784   0cc0 7786   1c1 7787    + caddc 7789    x. cmul 7791    - cmin 8102   # cap 8512   ZZcz 9226   ZZ>=cuz 9501    seqcseq 10415    ~~> cli 11254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-2 8951  df-3 8952  df-4 8953  df-n0 9150  df-z 9227  df-uz 9502  df-rp 9625  df-seqfrec 10416  df-exp 10490  df-cj 10819  df-re 10820  df-im 10821  df-rsqrt 10975  df-abs 10976  df-clim 11255
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator