ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeldmg Unicode version

Theorem opeldmg 4816
Description: Membership of first of an ordered pair in a domain. (Contributed by Jim Kingdon, 9-Jul-2019.)
Assertion
Ref Expression
opeldmg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  C  ->  A  e.  dom  C ) )

Proof of Theorem opeldmg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 opeq2 3766 . . . . 5  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
21eleq1d 2239 . . . 4  |-  ( y  =  B  ->  ( <. A ,  y >.  e.  C  <->  <. A ,  B >.  e.  C ) )
32spcegv 2818 . . 3  |-  ( B  e.  W  ->  ( <. A ,  B >.  e.  C  ->  E. y <. A ,  y >.  e.  C ) )
43adantl 275 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  C  ->  E. y <. A ,  y >.  e.  C ) )
5 eldm2g 4807 . . 3  |-  ( A  e.  V  ->  ( A  e.  dom  C  <->  E. y <. A ,  y >.  e.  C ) )
65adantr 274 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  dom  C  <->  E. y <. A ,  y
>.  e.  C ) )
74, 6sylibrd 168 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  C  ->  A  e.  dom  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   <.cop 3586   dom cdm 4611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-dm 4621
This theorem is referenced by:  tfr0dm  6301  tfrlemi14d  6312  tfr1onlemres  6328  tfrcllemres  6341  fnfi  6914  frecuzrdgtcl  10368  frecuzrdgdomlem  10373  hashennn  10714
  Copyright terms: Public domain W3C validator