ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeldmg Unicode version

Theorem opeldmg 4744
Description: Membership of first of an ordered pair in a domain. (Contributed by Jim Kingdon, 9-Jul-2019.)
Assertion
Ref Expression
opeldmg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  C  ->  A  e.  dom  C ) )

Proof of Theorem opeldmg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 opeq2 3706 . . . . 5  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
21eleq1d 2208 . . . 4  |-  ( y  =  B  ->  ( <. A ,  y >.  e.  C  <->  <. A ,  B >.  e.  C ) )
32spcegv 2774 . . 3  |-  ( B  e.  W  ->  ( <. A ,  B >.  e.  C  ->  E. y <. A ,  y >.  e.  C ) )
43adantl 275 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  C  ->  E. y <. A ,  y >.  e.  C ) )
5 eldm2g 4735 . . 3  |-  ( A  e.  V  ->  ( A  e.  dom  C  <->  E. y <. A ,  y >.  e.  C ) )
65adantr 274 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  dom  C  <->  E. y <. A ,  y
>.  e.  C ) )
74, 6sylibrd 168 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  C  ->  A  e.  dom  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480   <.cop 3530   dom cdm 4539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-dm 4549
This theorem is referenced by:  tfr0dm  6219  tfrlemi14d  6230  tfr1onlemres  6246  tfrcllemres  6259  fnfi  6825  frecuzrdgtcl  10185  frecuzrdgdomlem  10190  hashennn  10526
  Copyright terms: Public domain W3C validator