ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeldmg Unicode version

Theorem opeldmg 4809
Description: Membership of first of an ordered pair in a domain. (Contributed by Jim Kingdon, 9-Jul-2019.)
Assertion
Ref Expression
opeldmg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  C  ->  A  e.  dom  C ) )

Proof of Theorem opeldmg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 opeq2 3759 . . . . 5  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
21eleq1d 2235 . . . 4  |-  ( y  =  B  ->  ( <. A ,  y >.  e.  C  <->  <. A ,  B >.  e.  C ) )
32spcegv 2814 . . 3  |-  ( B  e.  W  ->  ( <. A ,  B >.  e.  C  ->  E. y <. A ,  y >.  e.  C ) )
43adantl 275 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  C  ->  E. y <. A ,  y >.  e.  C ) )
5 eldm2g 4800 . . 3  |-  ( A  e.  V  ->  ( A  e.  dom  C  <->  E. y <. A ,  y >.  e.  C ) )
65adantr 274 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  dom  C  <->  E. y <. A ,  y
>.  e.  C ) )
74, 6sylibrd 168 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  C  ->  A  e.  dom  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   <.cop 3579   dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-dm 4614
This theorem is referenced by:  tfr0dm  6290  tfrlemi14d  6301  tfr1onlemres  6317  tfrcllemres  6330  fnfi  6902  frecuzrdgtcl  10347  frecuzrdgdomlem  10352  hashennn  10693
  Copyright terms: Public domain W3C validator