ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeldmg Unicode version

Theorem opeldmg 4834
Description: Membership of first of an ordered pair in a domain. (Contributed by Jim Kingdon, 9-Jul-2019.)
Assertion
Ref Expression
opeldmg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  C  ->  A  e.  dom  C ) )

Proof of Theorem opeldmg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 opeq2 3781 . . . . 5  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
21eleq1d 2246 . . . 4  |-  ( y  =  B  ->  ( <. A ,  y >.  e.  C  <->  <. A ,  B >.  e.  C ) )
32spcegv 2827 . . 3  |-  ( B  e.  W  ->  ( <. A ,  B >.  e.  C  ->  E. y <. A ,  y >.  e.  C ) )
43adantl 277 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  C  ->  E. y <. A ,  y >.  e.  C ) )
5 eldm2g 4825 . . 3  |-  ( A  e.  V  ->  ( A  e.  dom  C  <->  E. y <. A ,  y >.  e.  C ) )
65adantr 276 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  dom  C  <->  E. y <. A ,  y
>.  e.  C ) )
74, 6sylibrd 169 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  C  ->  A  e.  dom  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   <.cop 3597   dom cdm 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-dm 4638
This theorem is referenced by:  tfr0dm  6325  tfrlemi14d  6336  tfr1onlemres  6352  tfrcllemres  6365  fnfi  6938  frecuzrdgtcl  10414  frecuzrdgdomlem  10419  hashennn  10762  imasaddfnlemg  12740
  Copyright terms: Public domain W3C validator