ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeldmg Unicode version

Theorem opeldmg 4871
Description: Membership of first of an ordered pair in a domain. (Contributed by Jim Kingdon, 9-Jul-2019.)
Assertion
Ref Expression
opeldmg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  C  ->  A  e.  dom  C ) )

Proof of Theorem opeldmg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 opeq2 3809 . . . . 5  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
21eleq1d 2265 . . . 4  |-  ( y  =  B  ->  ( <. A ,  y >.  e.  C  <->  <. A ,  B >.  e.  C ) )
32spcegv 2852 . . 3  |-  ( B  e.  W  ->  ( <. A ,  B >.  e.  C  ->  E. y <. A ,  y >.  e.  C ) )
43adantl 277 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  C  ->  E. y <. A ,  y >.  e.  C ) )
5 eldm2g 4862 . . 3  |-  ( A  e.  V  ->  ( A  e.  dom  C  <->  E. y <. A ,  y >.  e.  C ) )
65adantr 276 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  dom  C  <->  E. y <. A ,  y
>.  e.  C ) )
74, 6sylibrd 169 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  C  ->  A  e.  dom  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   <.cop 3625   dom cdm 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-dm 4673
This theorem is referenced by:  tfr0dm  6380  tfrlemi14d  6391  tfr1onlemres  6407  tfrcllemres  6420  fnfi  7002  frecuzrdgtcl  10504  frecuzrdgdomlem  10509  hashennn  10872  imasaddfnlemg  12957
  Copyright terms: Public domain W3C validator