ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breng Unicode version

Theorem breng 6847
Description: Equinumerosity relation. This variation of bren 6848 does not require the Axiom of Union. (Contributed by NM, 15-Jun-1998.) Extract from a subproof of bren 6848. (Revised by BTernaryTau, 23-Sep-2024.)
Assertion
Ref Expression
breng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  ~~  B  <->  E. f  f : A -1-1-onto-> B
) )
Distinct variable groups:    A, f    B, f
Allowed substitution hints:    V( f)    W( f)

Proof of Theorem breng
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oeq2 5523 . . 3  |-  ( x  =  A  ->  (
f : x -1-1-onto-> y  <->  f : A
-1-1-onto-> y ) )
21exbidv 1849 . 2  |-  ( x  =  A  ->  ( E. f  f :
x
-1-1-onto-> y 
<->  E. f  f : A -1-1-onto-> y ) )
3 f1oeq3 5524 . . 3  |-  ( y  =  B  ->  (
f : A -1-1-onto-> y  <->  f : A
-1-1-onto-> B ) )
43exbidv 1849 . 2  |-  ( y  =  B  ->  ( E. f  f : A
-1-1-onto-> y 
<->  E. f  f : A -1-1-onto-> B ) )
5 df-en 6841 . 2  |-  ~~  =  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }
62, 4, 5brabg 4323 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  ~~  B  <->  E. f  f : A -1-1-onto-> B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2177   class class class wbr 4051   -1-1-onto->wf1o 5279    ~~ cen 6838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-en 6841
This theorem is referenced by:  f1oen4g  6856  en2prd  6923
  Copyright terms: Public domain W3C validator