ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breng Unicode version

Theorem breng 6833
Description: Equinumerosity relation. This variation of bren 6834 does not require the Axiom of Union. (Contributed by NM, 15-Jun-1998.) Extract from a subproof of bren 6834. (Revised by BTernaryTau, 23-Sep-2024.)
Assertion
Ref Expression
breng  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  ~~  B  <->  E. f  f : A -1-1-onto-> B
) )
Distinct variable groups:    A, f    B, f
Allowed substitution hints:    V( f)    W( f)

Proof of Theorem breng
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oeq2 5510 . . 3  |-  ( x  =  A  ->  (
f : x -1-1-onto-> y  <->  f : A
-1-1-onto-> y ) )
21exbidv 1847 . 2  |-  ( x  =  A  ->  ( E. f  f :
x
-1-1-onto-> y 
<->  E. f  f : A -1-1-onto-> y ) )
3 f1oeq3 5511 . . 3  |-  ( y  =  B  ->  (
f : A -1-1-onto-> y  <->  f : A
-1-1-onto-> B ) )
43exbidv 1847 . 2  |-  ( y  =  B  ->  ( E. f  f : A
-1-1-onto-> y 
<->  E. f  f : A -1-1-onto-> B ) )
5 df-en 6827 . 2  |-  ~~  =  { <. x ,  y
>.  |  E. f 
f : x -1-1-onto-> y }
62, 4, 5brabg 4314 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  ~~  B  <->  E. f  f : A -1-1-onto-> B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372   E.wex 1514    e. wcel 2175   class class class wbr 4043   -1-1-onto->wf1o 5269    ~~ cen 6824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-en 6827
This theorem is referenced by:  f1oen4g  6842  en2prd  6908
  Copyright terms: Public domain W3C validator