ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2prd Unicode version

Theorem en2prd 6908
Description: Two proper unordered pairs are equinumerous. (Contributed by BTernaryTau, 23-Dec-2024.)
Hypotheses
Ref Expression
en2prd.1  |-  ( ph  ->  A  e.  V )
en2prd.2  |-  ( ph  ->  B  e.  W )
en2prd.3  |-  ( ph  ->  C  e.  X )
en2prd.4  |-  ( ph  ->  D  e.  Y )
en2prd.5  |-  ( ph  ->  A  =/=  B )
en2prd.6  |-  ( ph  ->  C  =/=  D )
Assertion
Ref Expression
en2prd  |-  ( ph  ->  { A ,  B }  ~~  { C ,  D } )

Proof of Theorem en2prd
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 en2prd.1 . . . . 5  |-  ( ph  ->  A  e.  V )
2 en2prd.3 . . . . 5  |-  ( ph  ->  C  e.  X )
3 opexg 4271 . . . . 5  |-  ( ( A  e.  V  /\  C  e.  X )  -> 
<. A ,  C >.  e. 
_V )
41, 2, 3syl2anc 411 . . . 4  |-  ( ph  -> 
<. A ,  C >.  e. 
_V )
5 en2prd.2 . . . . 5  |-  ( ph  ->  B  e.  W )
6 en2prd.4 . . . . 5  |-  ( ph  ->  D  e.  Y )
7 opexg 4271 . . . . 5  |-  ( ( B  e.  W  /\  D  e.  Y )  -> 
<. B ,  D >.  e. 
_V )
85, 6, 7syl2anc 411 . . . 4  |-  ( ph  -> 
<. B ,  D >.  e. 
_V )
9 prexg 4254 . . . 4  |-  ( (
<. A ,  C >.  e. 
_V  /\  <. B ,  D >.  e.  _V )  ->  { <. A ,  C >. ,  <. B ,  D >. }  e.  _V )
104, 8, 9syl2anc 411 . . 3  |-  ( ph  ->  { <. A ,  C >. ,  <. B ,  D >. }  e.  _V )
11 en2prd.5 . . . 4  |-  ( ph  ->  A  =/=  B )
12 en2prd.6 . . . 4  |-  ( ph  ->  C  =/=  D )
13 f1oprg 5565 . . . . 5  |-  ( ( ( A  e.  V  /\  C  e.  X
)  /\  ( B  e.  W  /\  D  e.  Y ) )  -> 
( ( A  =/= 
B  /\  C  =/=  D )  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } -1-1-onto-> { C ,  D }
) )
141, 2, 5, 6, 13syl22anc 1250 . . . 4  |-  ( ph  ->  ( ( A  =/= 
B  /\  C  =/=  D )  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } -1-1-onto-> { C ,  D }
) )
1511, 12, 14mp2and 433 . . 3  |-  ( ph  ->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } -1-1-onto-> { C ,  D } )
16 f1oeq1 5509 . . 3  |-  ( f  =  { <. A ,  C >. ,  <. B ,  D >. }  ->  (
f : { A ,  B } -1-1-onto-> { C ,  D } 
<->  { <. A ,  C >. ,  <. B ,  D >. } : { A ,  B } -1-1-onto-> { C ,  D } ) )
1710, 15, 16elabd 2917 . 2  |-  ( ph  ->  E. f  f : { A ,  B }
-1-1-onto-> { C ,  D }
)
18 prexg 4254 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { A ,  B }  e.  _V )
191, 5, 18syl2anc 411 . . 3  |-  ( ph  ->  { A ,  B }  e.  _V )
20 prexg 4254 . . . 4  |-  ( ( C  e.  X  /\  D  e.  Y )  ->  { C ,  D }  e.  _V )
212, 6, 20syl2anc 411 . . 3  |-  ( ph  ->  { C ,  D }  e.  _V )
22 breng 6833 . . 3  |-  ( ( { A ,  B }  e.  _V  /\  { C ,  D }  e.  _V )  ->  ( { A ,  B }  ~~  { C ,  D } 
<->  E. f  f : { A ,  B }
-1-1-onto-> { C ,  D }
) )
2319, 21, 22syl2anc 411 . 2  |-  ( ph  ->  ( { A ,  B }  ~~  { C ,  D }  <->  E. f 
f : { A ,  B } -1-1-onto-> { C ,  D } ) )
2417, 23mpbird 167 1  |-  ( ph  ->  { A ,  B }  ~~  { C ,  D } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1514    e. wcel 2175    =/= wne 2375   _Vcvv 2771   {cpr 3633   <.cop 3635   class class class wbr 4043   -1-1-onto->wf1o 5269    ~~ cen 6824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-en 6827
This theorem is referenced by:  rex2dom  6909
  Copyright terms: Public domain W3C validator