ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  encv Unicode version

Theorem encv 6800
Description: If two classes are equinumerous, both classes are sets. (Contributed by AV, 21-Mar-2019.)
Assertion
Ref Expression
encv  |-  ( A 
~~  B  ->  ( A  e.  _V  /\  B  e.  _V ) )

Proof of Theorem encv
StepHypRef Expression
1 relen 6798 . 2  |-  Rel  ~~
2 brrelex12 4697 . 2  |-  ( ( Rel  ~~  /\  A  ~~  B )  ->  ( A  e.  _V  /\  B  e.  _V ) )
31, 2mpan 424 1  |-  ( A 
~~  B  ->  ( A  e.  _V  /\  B  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164   _Vcvv 2760   class class class wbr 4029   Rel wrel 4664    ~~ cen 6792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-en 6795
This theorem is referenced by:  bren  6801  en1uniel  6858  cardcl  7241  isnumi  7242  cardval3ex  7245  djuen  7271  ccfunen  7324
  Copyright terms: Public domain W3C validator