ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  encv Unicode version

Theorem encv 6833
Description: If two classes are equinumerous, both classes are sets. (Contributed by AV, 21-Mar-2019.)
Assertion
Ref Expression
encv  |-  ( A 
~~  B  ->  ( A  e.  _V  /\  B  e.  _V ) )

Proof of Theorem encv
StepHypRef Expression
1 relen 6831 . 2  |-  Rel  ~~
2 brrelex12 4713 . 2  |-  ( ( Rel  ~~  /\  A  ~~  B )  ->  ( A  e.  _V  /\  B  e.  _V ) )
31, 2mpan 424 1  |-  ( A 
~~  B  ->  ( A  e.  _V  /\  B  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176   _Vcvv 2772   class class class wbr 4044   Rel wrel 4680    ~~ cen 6825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-en 6828
This theorem is referenced by:  bren  6835  en1uniel  6896  cardcl  7288  isnumi  7289  cardval3ex  7292  djuen  7323  ccfunen  7376
  Copyright terms: Public domain W3C validator