ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oen4g Unicode version

Theorem f1oen4g 6901
Description: The domain and range of a one-to-one, onto set function are equinumerous. This variation of f1oeng 6906 does not require the Axiom of Collection nor the Axiom of Union. (Contributed by BTernaryTau, 7-Dec-2024.)
Assertion
Ref Expression
f1oen4g  |-  ( ( ( F  e.  V  /\  A  e.  W  /\  B  e.  X
)  /\  F : A
-1-1-onto-> B )  ->  A  ~~  B )

Proof of Theorem f1oen4g
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 f1oeq1 5559 . . . . 5  |-  ( f  =  F  ->  (
f : A -1-1-onto-> B  <->  F : A
-1-1-onto-> B ) )
21spcegv 2891 . . . 4  |-  ( F  e.  V  ->  ( F : A -1-1-onto-> B  ->  E. f 
f : A -1-1-onto-> B ) )
32imp 124 . . 3  |-  ( ( F  e.  V  /\  F : A -1-1-onto-> B )  ->  E. f 
f : A -1-1-onto-> B )
433ad2antl1 1183 . 2  |-  ( ( ( F  e.  V  /\  A  e.  W  /\  B  e.  X
)  /\  F : A
-1-1-onto-> B )  ->  E. f 
f : A -1-1-onto-> B )
5 breng 6892 . . . 4  |-  ( ( A  e.  W  /\  B  e.  X )  ->  ( A  ~~  B  <->  E. f  f : A -1-1-onto-> B
) )
653adant1 1039 . . 3  |-  ( ( F  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( A  ~~  B  <->  E. f  f : A -1-1-onto-> B
) )
76adantr 276 . 2  |-  ( ( ( F  e.  V  /\  A  e.  W  /\  B  e.  X
)  /\  F : A
-1-1-onto-> B )  ->  ( A  ~~  B  <->  E. f 
f : A -1-1-onto-> B ) )
84, 7mpbird 167 1  |-  ( ( ( F  e.  V  /\  A  e.  W  /\  B  e.  X
)  /\  F : A
-1-1-onto-> B )  ->  A  ~~  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002   E.wex 1538    e. wcel 2200   class class class wbr 4082   -1-1-onto->wf1o 5316    ~~ cen 6883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-en 6886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator