ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcomg Unicode version

Theorem caovcomg 6079
Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 1-Jun-2013.)
Hypothesis
Ref Expression
caovcomg.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
Assertion
Ref Expression
caovcomg  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  S ) )  -> 
( A F B )  =  ( B F A ) )
Distinct variable groups:    x, y, A   
x, B, y    ph, x, y    x, F, y    x, S, y

Proof of Theorem caovcomg
StepHypRef Expression
1 caovcomg.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
21ralrimivva 2579 . 2  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  ( x F y )  =  ( y F x ) )
3 oveq1 5929 . . . 4  |-  ( x  =  A  ->  (
x F y )  =  ( A F y ) )
4 oveq2 5930 . . . 4  |-  ( x  =  A  ->  (
y F x )  =  ( y F A ) )
53, 4eqeq12d 2211 . . 3  |-  ( x  =  A  ->  (
( x F y )  =  ( y F x )  <->  ( A F y )  =  ( y F A ) ) )
6 oveq2 5930 . . . 4  |-  ( y  =  B  ->  ( A F y )  =  ( A F B ) )
7 oveq1 5929 . . . 4  |-  ( y  =  B  ->  (
y F A )  =  ( B F A ) )
86, 7eqeq12d 2211 . . 3  |-  ( y  =  B  ->  (
( A F y )  =  ( y F A )  <->  ( A F B )  =  ( B F A ) ) )
95, 8rspc2v 2881 . 2  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A. x  e.  S  A. y  e.  S  ( x F y )  =  ( y F x )  ->  ( A F B )  =  ( B F A ) ) )
102, 9mpan9 281 1  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  S ) )  -> 
( A F B )  =  ( B F A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475  (class class class)co 5922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925
This theorem is referenced by:  caovcomd  6080  caovcom  6081  caovlem2d  6116  caofcom  6161  seq3caopr  10587  seqcaoprg  10588  cmncom  13432
  Copyright terms: Public domain W3C validator