| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovcom | GIF version | ||
| Description: Convert an operation commutative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 1-Jun-2013.) |
| Ref | Expression |
|---|---|
| caovcom.1 | ⊢ 𝐴 ∈ V |
| caovcom.2 | ⊢ 𝐵 ∈ V |
| caovcom.3 | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
| Ref | Expression |
|---|---|
| caovcom | ⊢ (𝐴𝐹𝐵) = (𝐵𝐹𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovcom.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | caovcom.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | pm3.2i 272 | . 2 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
| 4 | caovcom.3 | . . . 4 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
| 5 | 4 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ V ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
| 6 | 5 | caovcomg 6160 | . 2 ⊢ ((𝐴 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
| 7 | 1, 3, 6 | mp2an 426 | 1 ⊢ (𝐴𝐹𝐵) = (𝐵𝐹𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 (class class class)co 6000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 |
| This theorem is referenced by: caovord2 6177 caov32 6192 caov12 6193 ecopovsym 6776 ecopover 6778 |
| Copyright terms: Public domain | W3C validator |