ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcom GIF version

Theorem caovcom 6103
Description: Convert an operation commutative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 1-Jun-2013.)
Hypotheses
Ref Expression
caovcom.1 𝐴 ∈ V
caovcom.2 𝐵 ∈ V
caovcom.3 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
Assertion
Ref Expression
caovcom (𝐴𝐹𝐵) = (𝐵𝐹𝐴)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem caovcom
StepHypRef Expression
1 caovcom.1 . 2 𝐴 ∈ V
2 caovcom.2 . . 3 𝐵 ∈ V
31, 2pm3.2i 272 . 2 (𝐴 ∈ V ∧ 𝐵 ∈ V)
4 caovcom.3 . . . 4 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
54a1i 9 . . 3 ((𝐴 ∈ V ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
65caovcomg 6101 . 2 ((𝐴 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))
71, 3, 6mp2an 426 1 (𝐴𝐹𝐵) = (𝐵𝐹𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1372  wcel 2175  Vcvv 2771  (class class class)co 5943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iota 5231  df-fv 5278  df-ov 5946
This theorem is referenced by:  caovord2  6118  caov32  6133  caov12  6134  ecopovsym  6717  ecopover  6719
  Copyright terms: Public domain W3C validator