| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovcom | GIF version | ||
| Description: Convert an operation commutative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 1-Jun-2013.) |
| Ref | Expression |
|---|---|
| caovcom.1 | ⊢ 𝐴 ∈ V |
| caovcom.2 | ⊢ 𝐵 ∈ V |
| caovcom.3 | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
| Ref | Expression |
|---|---|
| caovcom | ⊢ (𝐴𝐹𝐵) = (𝐵𝐹𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovcom.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | caovcom.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | pm3.2i 272 | . 2 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
| 4 | caovcom.3 | . . . 4 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
| 5 | 4 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ V ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
| 6 | 5 | caovcomg 6125 | . 2 ⊢ ((𝐴 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴)) |
| 7 | 1, 3, 6 | mp2an 426 | 1 ⊢ (𝐴𝐹𝐵) = (𝐵𝐹𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2178 Vcvv 2776 (class class class)co 5967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: caovord2 6142 caov32 6157 caov12 6158 ecopovsym 6741 ecopover 6743 |
| Copyright terms: Public domain | W3C validator |