ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcom GIF version

Theorem caovcom 6034
Description: Convert an operation commutative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 1-Jun-2013.)
Hypotheses
Ref Expression
caovcom.1 𝐴 ∈ V
caovcom.2 𝐵 ∈ V
caovcom.3 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
Assertion
Ref Expression
caovcom (𝐴𝐹𝐵) = (𝐵𝐹𝐴)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem caovcom
StepHypRef Expression
1 caovcom.1 . 2 𝐴 ∈ V
2 caovcom.2 . . 3 𝐵 ∈ V
31, 2pm3.2i 272 . 2 (𝐴 ∈ V ∧ 𝐵 ∈ V)
4 caovcom.3 . . . 4 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
54a1i 9 . . 3 ((𝐴 ∈ V ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥))
65caovcomg 6032 . 2 ((𝐴 ∈ V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → (𝐴𝐹𝐵) = (𝐵𝐹𝐴))
71, 3, 6mp2an 426 1 (𝐴𝐹𝐵) = (𝐵𝐹𝐴)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1353  wcel 2148  Vcvv 2739  (class class class)co 5877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5880
This theorem is referenced by:  caovord2  6049  caov32  6064  caov12  6065  ecopovsym  6633  ecopover  6635
  Copyright terms: Public domain W3C validator