| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovdilemd | GIF version | ||
| Description: Lemma used by real number construction. (Contributed by Jim Kingdon, 16-Sep-2019.) |
| Ref | Expression |
|---|---|
| caovdilemd.com | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) |
| caovdilemd.distr | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐹(𝑦𝐺𝑧))) |
| caovdilemd.ass | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) |
| caovdilemd.cl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) ∈ 𝑆) |
| caovdilemd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| caovdilemd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| caovdilemd.c | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| caovdilemd.d | ⊢ (𝜑 → 𝐷 ∈ 𝑆) |
| caovdilemd.h | ⊢ (𝜑 → 𝐻 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| caovdilemd | ⊢ (𝜑 → (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovdilemd.distr | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐹(𝑦𝐺𝑧))) | |
| 2 | caovdilemd.cl | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) ∈ 𝑆) | |
| 3 | caovdilemd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 4 | caovdilemd.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
| 5 | 2, 3, 4 | caovcld 6113 | . . 3 ⊢ (𝜑 → (𝐴𝐺𝐶) ∈ 𝑆) |
| 6 | caovdilemd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 7 | caovdilemd.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑆) | |
| 8 | 2, 6, 7 | caovcld 6113 | . . 3 ⊢ (𝜑 → (𝐵𝐺𝐷) ∈ 𝑆) |
| 9 | caovdilemd.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝑆) | |
| 10 | 1, 5, 8, 9 | caovdird 6138 | . 2 ⊢ (𝜑 → (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = (((𝐴𝐺𝐶)𝐺𝐻)𝐹((𝐵𝐺𝐷)𝐺𝐻))) |
| 11 | caovdilemd.ass | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) | |
| 12 | 11, 3, 4, 9 | caovassd 6119 | . . 3 ⊢ (𝜑 → ((𝐴𝐺𝐶)𝐺𝐻) = (𝐴𝐺(𝐶𝐺𝐻))) |
| 13 | 11, 6, 7, 9 | caovassd 6119 | . . 3 ⊢ (𝜑 → ((𝐵𝐺𝐷)𝐺𝐻) = (𝐵𝐺(𝐷𝐺𝐻))) |
| 14 | 12, 13 | oveq12d 5975 | . 2 ⊢ (𝜑 → (((𝐴𝐺𝐶)𝐺𝐻)𝐹((𝐵𝐺𝐷)𝐺𝐻)) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))) |
| 15 | 10, 14 | eqtrd 2239 | 1 ⊢ (𝜑 → (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 (class class class)co 5957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 |
| This theorem is referenced by: caovlem2d 6152 addassnqg 7515 addassnq0 7595 axmulass 8006 |
| Copyright terms: Public domain | W3C validator |