| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovdilemd | GIF version | ||
| Description: Lemma used by real number construction. (Contributed by Jim Kingdon, 16-Sep-2019.) |
| Ref | Expression |
|---|---|
| caovdilemd.com | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) |
| caovdilemd.distr | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐹(𝑦𝐺𝑧))) |
| caovdilemd.ass | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) |
| caovdilemd.cl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) ∈ 𝑆) |
| caovdilemd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| caovdilemd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| caovdilemd.c | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| caovdilemd.d | ⊢ (𝜑 → 𝐷 ∈ 𝑆) |
| caovdilemd.h | ⊢ (𝜑 → 𝐻 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| caovdilemd | ⊢ (𝜑 → (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovdilemd.distr | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐹(𝑦𝐺𝑧))) | |
| 2 | caovdilemd.cl | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) ∈ 𝑆) | |
| 3 | caovdilemd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 4 | caovdilemd.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
| 5 | 2, 3, 4 | caovcld 6158 | . . 3 ⊢ (𝜑 → (𝐴𝐺𝐶) ∈ 𝑆) |
| 6 | caovdilemd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 7 | caovdilemd.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑆) | |
| 8 | 2, 6, 7 | caovcld 6158 | . . 3 ⊢ (𝜑 → (𝐵𝐺𝐷) ∈ 𝑆) |
| 9 | caovdilemd.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝑆) | |
| 10 | 1, 5, 8, 9 | caovdird 6183 | . 2 ⊢ (𝜑 → (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = (((𝐴𝐺𝐶)𝐺𝐻)𝐹((𝐵𝐺𝐷)𝐺𝐻))) |
| 11 | caovdilemd.ass | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) | |
| 12 | 11, 3, 4, 9 | caovassd 6164 | . . 3 ⊢ (𝜑 → ((𝐴𝐺𝐶)𝐺𝐻) = (𝐴𝐺(𝐶𝐺𝐻))) |
| 13 | 11, 6, 7, 9 | caovassd 6164 | . . 3 ⊢ (𝜑 → ((𝐵𝐺𝐷)𝐺𝐻) = (𝐵𝐺(𝐷𝐺𝐻))) |
| 14 | 12, 13 | oveq12d 6018 | . 2 ⊢ (𝜑 → (((𝐴𝐺𝐶)𝐺𝐻)𝐹((𝐵𝐺𝐷)𝐺𝐻)) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))) |
| 15 | 10, 14 | eqtrd 2262 | 1 ⊢ (𝜑 → (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 (class class class)co 6000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 |
| This theorem is referenced by: caovlem2d 6197 addassnqg 7565 addassnq0 7645 axmulass 8056 |
| Copyright terms: Public domain | W3C validator |