![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caovdilemd | GIF version |
Description: Lemma used by real number construction. (Contributed by Jim Kingdon, 16-Sep-2019.) |
Ref | Expression |
---|---|
caovdilemd.com | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) |
caovdilemd.distr | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐹(𝑦𝐺𝑧))) |
caovdilemd.ass | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) |
caovdilemd.cl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) ∈ 𝑆) |
caovdilemd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
caovdilemd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
caovdilemd.c | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
caovdilemd.d | ⊢ (𝜑 → 𝐷 ∈ 𝑆) |
caovdilemd.h | ⊢ (𝜑 → 𝐻 ∈ 𝑆) |
Ref | Expression |
---|---|
caovdilemd | ⊢ (𝜑 → (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovdilemd.distr | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐹(𝑦𝐺𝑧))) | |
2 | caovdilemd.cl | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) ∈ 𝑆) | |
3 | caovdilemd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
4 | caovdilemd.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
5 | 2, 3, 4 | caovcld 5733 | . . 3 ⊢ (𝜑 → (𝐴𝐺𝐶) ∈ 𝑆) |
6 | caovdilemd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
7 | caovdilemd.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑆) | |
8 | 2, 6, 7 | caovcld 5733 | . . 3 ⊢ (𝜑 → (𝐵𝐺𝐷) ∈ 𝑆) |
9 | caovdilemd.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝑆) | |
10 | 1, 5, 8, 9 | caovdird 5758 | . 2 ⊢ (𝜑 → (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = (((𝐴𝐺𝐶)𝐺𝐻)𝐹((𝐵𝐺𝐷)𝐺𝐻))) |
11 | caovdilemd.ass | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) | |
12 | 11, 3, 4, 9 | caovassd 5739 | . . 3 ⊢ (𝜑 → ((𝐴𝐺𝐶)𝐺𝐻) = (𝐴𝐺(𝐶𝐺𝐻))) |
13 | 11, 6, 7, 9 | caovassd 5739 | . . 3 ⊢ (𝜑 → ((𝐵𝐺𝐷)𝐺𝐻) = (𝐵𝐺(𝐷𝐺𝐻))) |
14 | 12, 13 | oveq12d 5609 | . 2 ⊢ (𝜑 → (((𝐴𝐺𝐶)𝐺𝐻)𝐹((𝐵𝐺𝐷)𝐺𝐻)) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))) |
15 | 10, 14 | eqtrd 2115 | 1 ⊢ (𝜑 → (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∧ w3a 920 = wceq 1285 ∈ wcel 1434 (class class class)co 5591 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2614 df-un 2988 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-br 3812 df-iota 4934 df-fv 4977 df-ov 5594 |
This theorem is referenced by: caovlem2d 5772 addassnqg 6844 addassnq0 6924 axmulass 7311 |
Copyright terms: Public domain | W3C validator |