ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovdilemd GIF version

Theorem caovdilemd 6151
Description: Lemma used by real number construction. (Contributed by Jim Kingdon, 16-Sep-2019.)
Hypotheses
Ref Expression
caovdilemd.com ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
caovdilemd.distr ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐹(𝑦𝐺𝑧)))
caovdilemd.ass ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))
caovdilemd.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐺𝑦) ∈ 𝑆)
caovdilemd.a (𝜑𝐴𝑆)
caovdilemd.b (𝜑𝐵𝑆)
caovdilemd.c (𝜑𝐶𝑆)
caovdilemd.d (𝜑𝐷𝑆)
caovdilemd.h (𝜑𝐻𝑆)
Assertion
Ref Expression
caovdilemd (𝜑 → (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovdilemd
StepHypRef Expression
1 caovdilemd.distr . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐹(𝑦𝐺𝑧)))
2 caovdilemd.cl . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐺𝑦) ∈ 𝑆)
3 caovdilemd.a . . . 4 (𝜑𝐴𝑆)
4 caovdilemd.c . . . 4 (𝜑𝐶𝑆)
52, 3, 4caovcld 6113 . . 3 (𝜑 → (𝐴𝐺𝐶) ∈ 𝑆)
6 caovdilemd.b . . . 4 (𝜑𝐵𝑆)
7 caovdilemd.d . . . 4 (𝜑𝐷𝑆)
82, 6, 7caovcld 6113 . . 3 (𝜑 → (𝐵𝐺𝐷) ∈ 𝑆)
9 caovdilemd.h . . 3 (𝜑𝐻𝑆)
101, 5, 8, 9caovdird 6138 . 2 (𝜑 → (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = (((𝐴𝐺𝐶)𝐺𝐻)𝐹((𝐵𝐺𝐷)𝐺𝐻)))
11 caovdilemd.ass . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))
1211, 3, 4, 9caovassd 6119 . . 3 (𝜑 → ((𝐴𝐺𝐶)𝐺𝐻) = (𝐴𝐺(𝐶𝐺𝐻)))
1311, 6, 7, 9caovassd 6119 . . 3 (𝜑 → ((𝐵𝐺𝐷)𝐺𝐻) = (𝐵𝐺(𝐷𝐺𝐻)))
1412, 13oveq12d 5975 . 2 (𝜑 → (((𝐴𝐺𝐶)𝐺𝐻)𝐹((𝐵𝐺𝐷)𝐺𝐻)) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻))))
1510, 14eqtrd 2239 1 (𝜑 → (((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐷))𝐺𝐻) = ((𝐴𝐺(𝐶𝐺𝐻))𝐹(𝐵𝐺(𝐷𝐺𝐻))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  (class class class)co 5957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-iota 5241  df-fv 5288  df-ov 5960
This theorem is referenced by:  caovlem2d  6152  addassnqg  7515  addassnq0  7595  axmulass  8006
  Copyright terms: Public domain W3C validator