![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caovcld | Unicode version |
Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovclg.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
caovcld.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
caovcld.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
caovcld |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | caovcld.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | caovcld.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | caovclg.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | caovclg 5797 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 2, 3, 5 | syl12anc 1172 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-un 3003 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-iota 4980 df-fv 5023 df-ov 5655 |
This theorem is referenced by: caovdir2d 5821 caov4d 5829 caovdilemd 5836 caovlem2d 5837 grprinvd 5840 ecopovtrn 6389 ecopovtrng 6392 ordpipqqs 6933 ltanqg 6959 ltmnqg 6960 recexprlem1ssu 7193 mulgt0sr 7323 mulextsr1lem 7325 axmulass 7408 frec2uzrdg 9816 frecuzrdgsuc 9821 frecuzrdgsuctlem 9830 iseqovex 9870 iseqval 9871 iseqvalt 9873 seq3val 9874 iseqfclt 9879 seqf 9880 iseqp1 9882 iseqp1t 9883 seq3p1 9884 seq3clss 9887 iseqdistr 9945 seq3distr 9946 climcn2 10698 |
Copyright terms: Public domain | W3C validator |