Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caovcld | Unicode version |
Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovclg.1 | |
caovcld.2 | |
caovcld.3 |
Ref | Expression |
---|---|
caovcld |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 | |
2 | caovcld.2 | . 2 | |
3 | caovcld.3 | . 2 | |
4 | caovclg.1 | . . 3 | |
5 | 4 | caovclg 5994 | . 2 |
6 | 1, 2, 3, 5 | syl12anc 1226 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2136 (class class class)co 5842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: caovdir2d 6018 caov4d 6026 caovdilemd 6033 caovlem2d 6034 ecopovtrn 6598 ecopovtrng 6601 ordpipqqs 7315 ltanqg 7341 ltmnqg 7342 recexprlem1ssu 7575 mulgt0sr 7719 mulextsr1lem 7721 axmulass 7814 frec2uzrdg 10344 frecuzrdgsuc 10349 frecuzrdgsuctlem 10358 iseqovex 10391 seq3val 10393 seqf 10396 seq3p1 10397 seqp1cd 10401 seq3clss 10402 seq3distr 10448 climcn2 11250 grprinvd 12617 |
Copyright terms: Public domain | W3C validator |