ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcld Unicode version

Theorem caovcld 6081
Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovclg.1  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x F y )  e.  E )
caovcld.2  |-  ( ph  ->  A  e.  C )
caovcld.3  |-  ( ph  ->  B  e.  D )
Assertion
Ref Expression
caovcld  |-  ( ph  ->  ( A F B )  e.  E )
Distinct variable groups:    x, y, A   
y, B    x, C, y    x, D, y    x, E, y    ph, x, y   
x, F, y
Allowed substitution hint:    B( x)

Proof of Theorem caovcld
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
2 caovcld.2 . 2  |-  ( ph  ->  A  e.  C )
3 caovcld.3 . 2  |-  ( ph  ->  B  e.  D )
4 caovclg.1 . . 3  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x F y )  e.  E )
54caovclg 6080 . 2  |-  ( (
ph  /\  ( A  e.  C  /\  B  e.  D ) )  -> 
( A F B )  e.  E )
61, 2, 3, 5syl12anc 1247 1  |-  ( ph  ->  ( A F B )  e.  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167  (class class class)co 5925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928
This theorem is referenced by:  caovdir2d  6104  caov4d  6112  caovdilemd  6119  caovlem2d  6120  ecopovtrn  6700  ecopovtrng  6703  ordpipqqs  7460  ltanqg  7486  ltmnqg  7487  recexprlem1ssu  7720  mulgt0sr  7864  mulextsr1lem  7866  axmulass  7959  frec2uzrdg  10520  frecuzrdgsuc  10525  frecuzrdgsuctlem  10534  iseqovex  10569  seq3val  10571  seqf  10575  seq3p1  10576  seqp1cd  10581  seq3clss  10582  seq3distr  10643  climcn2  11493  qusaddvallemg  13037  grpinva  13090
  Copyright terms: Public domain W3C validator