ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcld Unicode version

Theorem caovcld 6031
Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovclg.1  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x F y )  e.  E )
caovcld.2  |-  ( ph  ->  A  e.  C )
caovcld.3  |-  ( ph  ->  B  e.  D )
Assertion
Ref Expression
caovcld  |-  ( ph  ->  ( A F B )  e.  E )
Distinct variable groups:    x, y, A   
y, B    x, C, y    x, D, y    x, E, y    ph, x, y   
x, F, y
Allowed substitution hint:    B( x)

Proof of Theorem caovcld
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
2 caovcld.2 . 2  |-  ( ph  ->  A  e.  C )
3 caovcld.3 . 2  |-  ( ph  ->  B  e.  D )
4 caovclg.1 . . 3  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x F y )  e.  E )
54caovclg 6030 . 2  |-  ( (
ph  /\  ( A  e.  C  /\  B  e.  D ) )  -> 
( A F B )  e.  E )
61, 2, 3, 5syl12anc 1236 1  |-  ( ph  ->  ( A F B )  e.  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2148  (class class class)co 5878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5881
This theorem is referenced by:  caovdir2d  6054  caov4d  6062  caovdilemd  6069  caovlem2d  6070  ecopovtrn  6635  ecopovtrng  6638  ordpipqqs  7376  ltanqg  7402  ltmnqg  7403  recexprlem1ssu  7636  mulgt0sr  7780  mulextsr1lem  7782  axmulass  7875  frec2uzrdg  10412  frecuzrdgsuc  10417  frecuzrdgsuctlem  10426  iseqovex  10459  seq3val  10461  seqf  10464  seq3p1  10465  seqp1cd  10469  seq3clss  10470  seq3distr  10516  climcn2  11320  qusaddvallemg  12758  grprinvd  12811
  Copyright terms: Public domain W3C validator