| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovcld | Unicode version | ||
| Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| caovclg.1 |
|
| caovcld.2 |
|
| caovcld.3 |
|
| Ref | Expression |
|---|---|
| caovcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | caovcld.2 |
. 2
| |
| 3 | caovcld.3 |
. 2
| |
| 4 | caovclg.1 |
. . 3
| |
| 5 | 4 | caovclg 6080 |
. 2
|
| 6 | 1, 2, 3, 5 | syl12anc 1247 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: caovdir2d 6104 caov4d 6112 caovdilemd 6119 caovlem2d 6120 ecopovtrn 6700 ecopovtrng 6703 ordpipqqs 7458 ltanqg 7484 ltmnqg 7485 recexprlem1ssu 7718 mulgt0sr 7862 mulextsr1lem 7864 axmulass 7957 frec2uzrdg 10518 frecuzrdgsuc 10523 frecuzrdgsuctlem 10532 iseqovex 10567 seq3val 10569 seqf 10573 seq3p1 10574 seqp1cd 10579 seq3clss 10580 seq3distr 10641 climcn2 11491 qusaddvallemg 13035 grpinva 13088 |
| Copyright terms: Public domain | W3C validator |