| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordpipqqs | Unicode version | ||
| Description: Ordering of positive fractions in terms of positive integers. (Contributed by Jim Kingdon, 14-Sep-2019.) |
| Ref | Expression |
|---|---|
| ordpipqqs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enqex 7472 |
. 2
| |
| 2 | enqer 7470 |
. 2
| |
| 3 | df-nqqs 7460 |
. 2
| |
| 4 | df-ltnqqs 7465 |
. 2
| |
| 5 | enqeceq 7471 |
. . . . 5
| |
| 6 | enqeceq 7471 |
. . . . . 6
| |
| 7 | eqcom 2206 |
. . . . . 6
| |
| 8 | 6, 7 | bitrdi 196 |
. . . . 5
|
| 9 | 5, 8 | bi2anan9 606 |
. . . 4
|
| 10 | oveq12 5952 |
. . . . 5
| |
| 11 | simplll 533 |
. . . . . . 7
| |
| 12 | simprlr 538 |
. . . . . . 7
| |
| 13 | simplrr 536 |
. . . . . . 7
| |
| 14 | mulcompig 7443 |
. . . . . . . 8
| |
| 15 | 14 | adantl 277 |
. . . . . . 7
|
| 16 | mulasspig 7444 |
. . . . . . . 8
| |
| 17 | 16 | adantl 277 |
. . . . . . 7
|
| 18 | simprrl 539 |
. . . . . . 7
| |
| 19 | mulclpi 7440 |
. . . . . . . 8
| |
| 20 | 19 | adantl 277 |
. . . . . . 7
|
| 21 | 11, 12, 13, 15, 17, 18, 20 | caov4d 6130 |
. . . . . 6
|
| 22 | simpllr 534 |
. . . . . . 7
| |
| 23 | simprll 537 |
. . . . . . 7
| |
| 24 | simplrl 535 |
. . . . . . 7
| |
| 25 | simprrr 540 |
. . . . . . 7
| |
| 26 | 22, 23, 24, 15, 17, 25, 20 | caov4d 6130 |
. . . . . 6
|
| 27 | 21, 26 | eqeq12d 2219 |
. . . . 5
|
| 28 | 10, 27 | imbitrrid 156 |
. . . 4
|
| 29 | 9, 28 | sylbid 150 |
. . 3
|
| 30 | ltmpig 7451 |
. . . . 5
| |
| 31 | 30 | adantl 277 |
. . . 4
|
| 32 | 20, 11, 12 | caovcld 6099 |
. . . 4
|
| 33 | 20, 13, 18 | caovcld 6099 |
. . . 4
|
| 34 | 20, 22, 23 | caovcld 6099 |
. . . 4
|
| 35 | 20, 24, 25 | caovcld 6099 |
. . . 4
|
| 36 | 31, 32, 33, 34, 15, 35 | caovord3d 6116 |
. . 3
|
| 37 | 29, 36 | syld 45 |
. 2
|
| 38 | 1, 2, 3, 4, 37 | brecop 6711 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-eprel 4335 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-oadd 6505 df-omul 6506 df-er 6619 df-ec 6621 df-qs 6625 df-ni 7416 df-mi 7418 df-lti 7419 df-enq 7459 df-nqqs 7460 df-ltnqqs 7465 |
| This theorem is referenced by: nqtri3or 7508 ltdcnq 7509 ltsonq 7510 ltanqg 7512 ltmnqg 7513 1lt2nq 7518 ltexnqq 7520 archnqq 7529 prarloclemarch2 7531 ltnnnq 7535 prarloclemlt 7605 |
| Copyright terms: Public domain | W3C validator |