ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordpipqqs Unicode version

Theorem ordpipqqs 7436
Description: Ordering of positive fractions in terms of positive integers. (Contributed by Jim Kingdon, 14-Sep-2019.)
Assertion
Ref Expression
ordpipqqs  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( [ <. A ,  B >. ]  ~Q  <Q  [ <. C ,  D >. ]  ~Q  <->  ( A  .N  D )  <N  ( B  .N  C ) ) )

Proof of Theorem ordpipqqs
Dummy variables  x  y  z  w  v  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enqex 7422 . 2  |-  ~Q  e.  _V
2 enqer 7420 . 2  |-  ~Q  Er  ( N.  X.  N. )
3 df-nqqs 7410 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
4 df-ltnqqs 7415 . 2  |-  <Q  =  { <. x ,  y
>.  |  ( (
x  e.  Q.  /\  y  e.  Q. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~Q  /\  y  =  [ <. v ,  u >. ]  ~Q  )  /\  ( z  .N  u
)  <N  ( w  .N  v ) ) ) }
5 enqeceq 7421 . . . . 5  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  =  [ <. A ,  B >. ]  ~Q  <->  ( z  .N  B )  =  ( w  .N  A ) ) )
6 enqeceq 7421 . . . . . 6  |-  ( ( ( v  e.  N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  =  [ <. C ,  D >. ]  ~Q  <->  ( v  .N  D )  =  ( u  .N  C ) ) )
7 eqcom 2195 . . . . . 6  |-  ( ( v  .N  D )  =  ( u  .N  C )  <->  ( u  .N  C )  =  ( v  .N  D ) )
86, 7bitrdi 196 . . . . 5  |-  ( ( ( v  e.  N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  =  [ <. C ,  D >. ]  ~Q  <->  ( u  .N  C )  =  ( v  .N  D ) ) )
95, 8bi2anan9 606 . . . 4  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  ->  ( ( [
<. z ,  w >. ]  ~Q  =  [ <. A ,  B >. ]  ~Q  /\ 
[ <. v ,  u >. ]  ~Q  =  [ <. C ,  D >. ]  ~Q  )  <->  ( (
z  .N  B )  =  ( w  .N  A )  /\  (
u  .N  C )  =  ( v  .N  D ) ) ) )
10 oveq12 5928 . . . . 5  |-  ( ( ( z  .N  B
)  =  ( w  .N  A )  /\  ( u  .N  C
)  =  ( v  .N  D ) )  ->  ( ( z  .N  B )  .N  ( u  .N  C
) )  =  ( ( w  .N  A
)  .N  ( v  .N  D ) ) )
11 simplll 533 . . . . . . 7  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  ->  z  e.  N. )
12 simprlr 538 . . . . . . 7  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  ->  u  e.  N. )
13 simplrr 536 . . . . . . 7  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  ->  B  e.  N. )
14 mulcompig 7393 . . . . . . . 8  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  .N  y
)  =  ( y  .N  x ) )
1514adantl 277 . . . . . . 7  |-  ( ( ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N. ) )  ->  (
x  .N  y )  =  ( y  .N  x ) )
16 mulasspig 7394 . . . . . . . 8  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  f  e.  N. )  ->  (
( x  .N  y
)  .N  f )  =  ( x  .N  ( y  .N  f
) ) )
1716adantl 277 . . . . . . 7  |-  ( ( ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N.  /\  f  e.  N. ) )  ->  (
( x  .N  y
)  .N  f )  =  ( x  .N  ( y  .N  f
) ) )
18 simprrl 539 . . . . . . 7  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  ->  C  e.  N. )
19 mulclpi 7390 . . . . . . . 8  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  .N  y
)  e.  N. )
2019adantl 277 . . . . . . 7  |-  ( ( ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N. ) )  ->  (
x  .N  y )  e.  N. )
2111, 12, 13, 15, 17, 18, 20caov4d 6105 . . . . . 6  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  ->  ( ( z  .N  u )  .N  ( B  .N  C
) )  =  ( ( z  .N  B
)  .N  ( u  .N  C ) ) )
22 simpllr 534 . . . . . . 7  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  ->  w  e.  N. )
23 simprll 537 . . . . . . 7  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  ->  v  e.  N. )
24 simplrl 535 . . . . . . 7  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  ->  A  e.  N. )
25 simprrr 540 . . . . . . 7  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  ->  D  e.  N. )
2622, 23, 24, 15, 17, 25, 20caov4d 6105 . . . . . 6  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  ->  ( ( w  .N  v )  .N  ( A  .N  D
) )  =  ( ( w  .N  A
)  .N  ( v  .N  D ) ) )
2721, 26eqeq12d 2208 . . . . 5  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  ->  ( ( ( z  .N  u )  .N  ( B  .N  C ) )  =  ( ( w  .N  v )  .N  ( A  .N  D ) )  <-> 
( ( z  .N  B )  .N  (
u  .N  C ) )  =  ( ( w  .N  A )  .N  ( v  .N  D ) ) ) )
2810, 27imbitrrid 156 . . . 4  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  ->  ( ( ( z  .N  B )  =  ( w  .N  A )  /\  (
u  .N  C )  =  ( v  .N  D ) )  -> 
( ( z  .N  u )  .N  ( B  .N  C ) )  =  ( ( w  .N  v )  .N  ( A  .N  D
) ) ) )
299, 28sylbid 150 . . 3  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  ->  ( ( [
<. z ,  w >. ]  ~Q  =  [ <. A ,  B >. ]  ~Q  /\ 
[ <. v ,  u >. ]  ~Q  =  [ <. C ,  D >. ]  ~Q  )  ->  (
( z  .N  u
)  .N  ( B  .N  C ) )  =  ( ( w  .N  v )  .N  ( A  .N  D
) ) ) )
30 ltmpig 7401 . . . . 5  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  f  e.  N. )  ->  (
x  <N  y  <->  ( f  .N  x )  <N  (
f  .N  y ) ) )
3130adantl 277 . . . 4  |-  ( ( ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N.  /\  f  e.  N. ) )  ->  (
x  <N  y  <->  ( f  .N  x )  <N  (
f  .N  y ) ) )
3220, 11, 12caovcld 6074 . . . 4  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  ->  ( z  .N  u )  e.  N. )
3320, 13, 18caovcld 6074 . . . 4  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  ->  ( B  .N  C )  e.  N. )
3420, 22, 23caovcld 6074 . . . 4  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  ->  ( w  .N  v )  e.  N. )
3520, 24, 25caovcld 6074 . . . 4  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  ->  ( A  .N  D )  e.  N. )
3631, 32, 33, 34, 15, 35caovord3d 6091 . . 3  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  ->  ( ( ( z  .N  u )  .N  ( B  .N  C ) )  =  ( ( w  .N  v )  .N  ( A  .N  D ) )  ->  ( ( z  .N  u )  <N 
( w  .N  v
)  <->  ( A  .N  D )  <N  ( B  .N  C ) ) ) )
3729, 36syld 45 . 2  |-  ( ( ( ( z  e. 
N.  /\  w  e.  N. )  /\  ( A  e.  N.  /\  B  e.  N. ) )  /\  ( ( v  e. 
N.  /\  u  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) ) )  ->  ( ( [
<. z ,  w >. ]  ~Q  =  [ <. A ,  B >. ]  ~Q  /\ 
[ <. v ,  u >. ]  ~Q  =  [ <. C ,  D >. ]  ~Q  )  ->  (
( z  .N  u
)  <N  ( w  .N  v )  <->  ( A  .N  D )  <N  ( B  .N  C ) ) ) )
381, 2, 3, 4, 37brecop 6681 1  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. )
)  ->  ( [ <. A ,  B >. ]  ~Q  <Q  [ <. C ,  D >. ]  ~Q  <->  ( A  .N  D )  <N  ( B  .N  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   <.cop 3622   class class class wbr 4030  (class class class)co 5919   [cec 6587   N.cnpi 7334    .N cmi 7336    <N clti 7337    ~Q ceq 7341   Q.cnq 7342    <Q cltq 7347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-mi 7368  df-lti 7369  df-enq 7409  df-nqqs 7410  df-ltnqqs 7415
This theorem is referenced by:  nqtri3or  7458  ltdcnq  7459  ltsonq  7460  ltanqg  7462  ltmnqg  7463  1lt2nq  7468  ltexnqq  7470  archnqq  7479  prarloclemarch2  7481  ltnnnq  7485  prarloclemlt  7555
  Copyright terms: Public domain W3C validator