| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordpipqqs | Unicode version | ||
| Description: Ordering of positive fractions in terms of positive integers. (Contributed by Jim Kingdon, 14-Sep-2019.) |
| Ref | Expression |
|---|---|
| ordpipqqs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enqex 7503 |
. 2
| |
| 2 | enqer 7501 |
. 2
| |
| 3 | df-nqqs 7491 |
. 2
| |
| 4 | df-ltnqqs 7496 |
. 2
| |
| 5 | enqeceq 7502 |
. . . . 5
| |
| 6 | enqeceq 7502 |
. . . . . 6
| |
| 7 | eqcom 2208 |
. . . . . 6
| |
| 8 | 6, 7 | bitrdi 196 |
. . . . 5
|
| 9 | 5, 8 | bi2anan9 606 |
. . . 4
|
| 10 | oveq12 5971 |
. . . . 5
| |
| 11 | simplll 533 |
. . . . . . 7
| |
| 12 | simprlr 538 |
. . . . . . 7
| |
| 13 | simplrr 536 |
. . . . . . 7
| |
| 14 | mulcompig 7474 |
. . . . . . . 8
| |
| 15 | 14 | adantl 277 |
. . . . . . 7
|
| 16 | mulasspig 7475 |
. . . . . . . 8
| |
| 17 | 16 | adantl 277 |
. . . . . . 7
|
| 18 | simprrl 539 |
. . . . . . 7
| |
| 19 | mulclpi 7471 |
. . . . . . . 8
| |
| 20 | 19 | adantl 277 |
. . . . . . 7
|
| 21 | 11, 12, 13, 15, 17, 18, 20 | caov4d 6149 |
. . . . . 6
|
| 22 | simpllr 534 |
. . . . . . 7
| |
| 23 | simprll 537 |
. . . . . . 7
| |
| 24 | simplrl 535 |
. . . . . . 7
| |
| 25 | simprrr 540 |
. . . . . . 7
| |
| 26 | 22, 23, 24, 15, 17, 25, 20 | caov4d 6149 |
. . . . . 6
|
| 27 | 21, 26 | eqeq12d 2221 |
. . . . 5
|
| 28 | 10, 27 | imbitrrid 156 |
. . . 4
|
| 29 | 9, 28 | sylbid 150 |
. . 3
|
| 30 | ltmpig 7482 |
. . . . 5
| |
| 31 | 30 | adantl 277 |
. . . 4
|
| 32 | 20, 11, 12 | caovcld 6118 |
. . . 4
|
| 33 | 20, 13, 18 | caovcld 6118 |
. . . 4
|
| 34 | 20, 22, 23 | caovcld 6118 |
. . . 4
|
| 35 | 20, 24, 25 | caovcld 6118 |
. . . 4
|
| 36 | 31, 32, 33, 34, 15, 35 | caovord3d 6135 |
. . 3
|
| 37 | 29, 36 | syld 45 |
. 2
|
| 38 | 1, 2, 3, 4, 37 | brecop 6730 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-eprel 4349 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-oadd 6524 df-omul 6525 df-er 6638 df-ec 6640 df-qs 6644 df-ni 7447 df-mi 7449 df-lti 7450 df-enq 7490 df-nqqs 7491 df-ltnqqs 7496 |
| This theorem is referenced by: nqtri3or 7539 ltdcnq 7540 ltsonq 7541 ltanqg 7543 ltmnqg 7544 1lt2nq 7549 ltexnqq 7551 archnqq 7560 prarloclemarch2 7562 ltnnnq 7566 prarloclemlt 7636 |
| Copyright terms: Public domain | W3C validator |