| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordpipqqs | Unicode version | ||
| Description: Ordering of positive fractions in terms of positive integers. (Contributed by Jim Kingdon, 14-Sep-2019.) |
| Ref | Expression |
|---|---|
| ordpipqqs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enqex 7473 |
. 2
| |
| 2 | enqer 7471 |
. 2
| |
| 3 | df-nqqs 7461 |
. 2
| |
| 4 | df-ltnqqs 7466 |
. 2
| |
| 5 | enqeceq 7472 |
. . . . 5
| |
| 6 | enqeceq 7472 |
. . . . . 6
| |
| 7 | eqcom 2207 |
. . . . . 6
| |
| 8 | 6, 7 | bitrdi 196 |
. . . . 5
|
| 9 | 5, 8 | bi2anan9 606 |
. . . 4
|
| 10 | oveq12 5953 |
. . . . 5
| |
| 11 | simplll 533 |
. . . . . . 7
| |
| 12 | simprlr 538 |
. . . . . . 7
| |
| 13 | simplrr 536 |
. . . . . . 7
| |
| 14 | mulcompig 7444 |
. . . . . . . 8
| |
| 15 | 14 | adantl 277 |
. . . . . . 7
|
| 16 | mulasspig 7445 |
. . . . . . . 8
| |
| 17 | 16 | adantl 277 |
. . . . . . 7
|
| 18 | simprrl 539 |
. . . . . . 7
| |
| 19 | mulclpi 7441 |
. . . . . . . 8
| |
| 20 | 19 | adantl 277 |
. . . . . . 7
|
| 21 | 11, 12, 13, 15, 17, 18, 20 | caov4d 6131 |
. . . . . 6
|
| 22 | simpllr 534 |
. . . . . . 7
| |
| 23 | simprll 537 |
. . . . . . 7
| |
| 24 | simplrl 535 |
. . . . . . 7
| |
| 25 | simprrr 540 |
. . . . . . 7
| |
| 26 | 22, 23, 24, 15, 17, 25, 20 | caov4d 6131 |
. . . . . 6
|
| 27 | 21, 26 | eqeq12d 2220 |
. . . . 5
|
| 28 | 10, 27 | imbitrrid 156 |
. . . 4
|
| 29 | 9, 28 | sylbid 150 |
. . 3
|
| 30 | ltmpig 7452 |
. . . . 5
| |
| 31 | 30 | adantl 277 |
. . . 4
|
| 32 | 20, 11, 12 | caovcld 6100 |
. . . 4
|
| 33 | 20, 13, 18 | caovcld 6100 |
. . . 4
|
| 34 | 20, 22, 23 | caovcld 6100 |
. . . 4
|
| 35 | 20, 24, 25 | caovcld 6100 |
. . . 4
|
| 36 | 31, 32, 33, 34, 15, 35 | caovord3d 6117 |
. . 3
|
| 37 | 29, 36 | syld 45 |
. 2
|
| 38 | 1, 2, 3, 4, 37 | brecop 6712 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-eprel 4336 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-oadd 6506 df-omul 6507 df-er 6620 df-ec 6622 df-qs 6626 df-ni 7417 df-mi 7419 df-lti 7420 df-enq 7460 df-nqqs 7461 df-ltnqqs 7466 |
| This theorem is referenced by: nqtri3or 7509 ltdcnq 7510 ltsonq 7511 ltanqg 7513 ltmnqg 7514 1lt2nq 7519 ltexnqq 7521 archnqq 7530 prarloclemarch2 7532 ltnnnq 7536 prarloclemlt 7606 |
| Copyright terms: Public domain | W3C validator |