ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsrprg Unicode version

Theorem ltsrprg 7579
Description: Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.)
Assertion
Ref Expression
ltsrprg  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  <R  [ <. C ,  D >. ]  ~R  <->  ( A  +P.  D )  <P  ( B  +P.  C ) ) )

Proof of Theorem ltsrprg
Dummy variables  x  y  z  w  v  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enrex 7569 . 2  |-  ~R  e.  _V
2 enrer 7567 . 2  |-  ~R  Er  ( P.  X.  P. )
3 df-nr 7559 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
4 df-ltr 7562 . 2  |-  <R  =  { <. x ,  y
>.  |  ( (
x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ]  ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u
)  <P  ( w  +P.  v ) ) ) }
5 enreceq 7568 . . . . 5  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  =  [ <. A ,  B >. ]  ~R  <->  ( z  +P.  B )  =  ( w  +P.  A ) ) )
6 enreceq 7568 . . . . . 6  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. v ,  u >. ]  ~R  =  [ <. C ,  D >. ]  ~R  <->  ( v  +P.  D )  =  ( u  +P.  C ) ) )
7 eqcom 2142 . . . . . 6  |-  ( ( v  +P.  D )  =  ( u  +P.  C )  <->  ( u  +P.  C )  =  ( v  +P.  D ) )
86, 7syl6bb 195 . . . . 5  |-  ( ( ( v  e.  P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. v ,  u >. ]  ~R  =  [ <. C ,  D >. ]  ~R  <->  ( u  +P.  C )  =  ( v  +P. 
D ) ) )
95, 8bi2anan9 596 . . . 4  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( [
<. z ,  w >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\ 
[ <. v ,  u >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  <->  ( (
z  +P.  B )  =  ( w  +P.  A )  /\  ( u  +P.  C )  =  ( v  +P.  D
) ) ) )
10 oveq12 5791 . . . . . . 7  |-  ( ( ( z  +P.  B
)  =  ( w  +P.  A )  /\  ( u  +P.  C )  =  ( v  +P. 
D ) )  -> 
( ( z  +P. 
B )  +P.  (
u  +P.  C )
)  =  ( ( w  +P.  A )  +P.  ( v  +P. 
D ) ) )
1110adantl 275 . . . . . 6  |-  ( ( ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  /\  ( ( z  +P.  B )  =  ( w  +P.  A
)  /\  ( u  +P.  C )  =  ( v  +P.  D ) ) )  ->  (
( z  +P.  B
)  +P.  ( u  +P.  C ) )  =  ( ( w  +P.  A )  +P.  ( v  +P.  D ) ) )
12 simprlr 528 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  u  e.  P. )
13 simplrr 526 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  B  e.  P. )
14 addcomprg 7410 . . . . . . . . . . . 12  |-  ( ( u  e.  P.  /\  B  e.  P. )  ->  ( u  +P.  B
)  =  ( B  +P.  u ) )
1514oveq1d 5797 . . . . . . . . . . 11  |-  ( ( u  e.  P.  /\  B  e.  P. )  ->  ( ( u  +P.  B )  +P.  C )  =  ( ( B  +P.  u )  +P. 
C ) )
1612, 13, 15syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( u  +P.  B )  +P. 
C )  =  ( ( B  +P.  u
)  +P.  C )
)
17 simprrl 529 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  C  e.  P. )
18 addassprg 7411 . . . . . . . . . . 11  |-  ( ( u  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( u  +P.  B
)  +P.  C )  =  ( u  +P.  ( B  +P.  C ) ) )
1912, 13, 17, 18syl3anc 1217 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( u  +P.  B )  +P. 
C )  =  ( u  +P.  ( B  +P.  C ) ) )
20 addassprg 7411 . . . . . . . . . . 11  |-  ( ( B  e.  P.  /\  u  e.  P.  /\  C  e.  P. )  ->  (
( B  +P.  u
)  +P.  C )  =  ( B  +P.  ( u  +P.  C ) ) )
2113, 12, 17, 20syl3anc 1217 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( B  +P.  u )  +P. 
C )  =  ( B  +P.  ( u  +P.  C ) ) )
2216, 19, 213eqtr3d 2181 . . . . . . . . 9  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( u  +P.  ( B  +P.  C ) )  =  ( B  +P.  ( u  +P.  C ) ) )
2322oveq2d 5798 . . . . . . . 8  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( z  +P.  ( u  +P.  ( B  +P.  C ) ) )  =  ( z  +P.  ( B  +P.  ( u  +P.  C ) ) ) )
24 simplll 523 . . . . . . . . 9  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  z  e.  P. )
25 addclpr 7369 . . . . . . . . . . . . 13  |-  ( ( w  e.  P.  /\  v  e.  P. )  ->  ( w  +P.  v
)  e.  P. )
2625ad2ant2lr 502 . . . . . . . . . . . 12  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( v  e.  P.  /\  u  e.  P. )
)  ->  ( w  +P.  v )  e.  P. )
27 addclpr 7369 . . . . . . . . . . . . 13  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C
)  e.  P. )
2827ad2ant2lr 502 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( B  +P.  C )  e.  P. )
2926, 28anim12ci 337 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  (
v  e.  P.  /\  u  e.  P. )
)  /\  ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( B  +P.  C )  e. 
P.  /\  ( w  +P.  v )  e.  P. ) )
3029an4s 578 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( B  +P.  C )  e. 
P.  /\  ( w  +P.  v )  e.  P. ) )
3130simpld 111 . . . . . . . . 9  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( B  +P.  C )  e.  P. )
32 addassprg 7411 . . . . . . . . 9  |-  ( ( z  e.  P.  /\  u  e.  P.  /\  ( B  +P.  C )  e. 
P. )  ->  (
( z  +P.  u
)  +P.  ( B  +P.  C ) )  =  ( z  +P.  (
u  +P.  ( B  +P.  C ) ) ) )
3324, 12, 31, 32syl3anc 1217 . . . . . . . 8  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( z  +P.  u )  +P.  ( B  +P.  C
) )  =  ( z  +P.  ( u  +P.  ( B  +P.  C ) ) ) )
34 addclpr 7369 . . . . . . . . . 10  |-  ( ( u  e.  P.  /\  C  e.  P. )  ->  ( u  +P.  C
)  e.  P. )
3512, 17, 34syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( u  +P.  C )  e.  P. )
36 addassprg 7411 . . . . . . . . 9  |-  ( ( z  e.  P.  /\  B  e.  P.  /\  (
u  +P.  C )  e.  P. )  ->  (
( z  +P.  B
)  +P.  ( u  +P.  C ) )  =  ( z  +P.  ( B  +P.  ( u  +P.  C ) ) ) )
3724, 13, 35, 36syl3anc 1217 . . . . . . . 8  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( z  +P.  B )  +P.  ( u  +P.  C
) )  =  ( z  +P.  ( B  +P.  ( u  +P.  C ) ) ) )
3823, 33, 373eqtr4d 2183 . . . . . . 7  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( z  +P.  u )  +P.  ( B  +P.  C
) )  =  ( ( z  +P.  B
)  +P.  ( u  +P.  C ) ) )
3938adantr 274 . . . . . 6  |-  ( ( ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  /\  ( ( z  +P.  B )  =  ( w  +P.  A
)  /\  ( u  +P.  C )  =  ( v  +P.  D ) ) )  ->  (
( z  +P.  u
)  +P.  ( B  +P.  C ) )  =  ( ( z  +P. 
B )  +P.  (
u  +P.  C )
) )
40 simprll 527 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  v  e.  P. )
41 simplrl 525 . . . . . . . . . . . 12  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  A  e.  P. )
42 addcomprg 7410 . . . . . . . . . . . 12  |-  ( ( v  e.  P.  /\  A  e.  P. )  ->  ( v  +P.  A
)  =  ( A  +P.  v ) )
4340, 41, 42syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( v  +P. 
A )  =  ( A  +P.  v ) )
4443oveq1d 5797 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( v  +P.  A )  +P. 
D )  =  ( ( A  +P.  v
)  +P.  D )
)
45 simprrr 530 . . . . . . . . . . 11  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  D  e.  P. )
46 addassprg 7411 . . . . . . . . . . 11  |-  ( ( v  e.  P.  /\  A  e.  P.  /\  D  e.  P. )  ->  (
( v  +P.  A
)  +P.  D )  =  ( v  +P.  ( A  +P.  D
) ) )
4740, 41, 45, 46syl3anc 1217 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( v  +P.  A )  +P. 
D )  =  ( v  +P.  ( A  +P.  D ) ) )
48 addassprg 7411 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  v  e.  P.  /\  D  e.  P. )  ->  (
( A  +P.  v
)  +P.  D )  =  ( A  +P.  ( v  +P.  D
) ) )
4941, 40, 45, 48syl3anc 1217 . . . . . . . . . 10  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( A  +P.  v )  +P. 
D )  =  ( A  +P.  ( v  +P.  D ) ) )
5044, 47, 493eqtr3d 2181 . . . . . . . . 9  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( v  +P.  ( A  +P.  D
) )  =  ( A  +P.  ( v  +P.  D ) ) )
5150oveq2d 5798 . . . . . . . 8  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( w  +P.  ( v  +P.  ( A  +P.  D ) ) )  =  ( w  +P.  ( A  +P.  ( v  +P.  D
) ) ) )
52 simpllr 524 . . . . . . . . 9  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  w  e.  P. )
53 addclpr 7369 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  D  e.  P. )  ->  ( A  +P.  D
)  e.  P. )
5441, 45, 53syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( A  +P.  D )  e.  P. )
55 addassprg 7411 . . . . . . . . 9  |-  ( ( w  e.  P.  /\  v  e.  P.  /\  ( A  +P.  D )  e. 
P. )  ->  (
( w  +P.  v
)  +P.  ( A  +P.  D ) )  =  ( w  +P.  (
v  +P.  ( A  +P.  D ) ) ) )
5652, 40, 54, 55syl3anc 1217 . . . . . . . 8  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( w  +P.  v )  +P.  ( A  +P.  D
) )  =  ( w  +P.  ( v  +P.  ( A  +P.  D ) ) ) )
57 addclpr 7369 . . . . . . . . . 10  |-  ( ( v  e.  P.  /\  D  e.  P. )  ->  ( v  +P.  D
)  e.  P. )
5840, 45, 57syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( v  +P. 
D )  e.  P. )
59 addassprg 7411 . . . . . . . . 9  |-  ( ( w  e.  P.  /\  A  e.  P.  /\  (
v  +P.  D )  e.  P. )  ->  (
( w  +P.  A
)  +P.  ( v  +P.  D ) )  =  ( w  +P.  ( A  +P.  ( v  +P. 
D ) ) ) )
6052, 41, 58, 59syl3anc 1217 . . . . . . . 8  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( w  +P.  A )  +P.  ( v  +P.  D
) )  =  ( w  +P.  ( A  +P.  ( v  +P. 
D ) ) ) )
6151, 56, 603eqtr4d 2183 . . . . . . 7  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( w  +P.  v )  +P.  ( A  +P.  D
) )  =  ( ( w  +P.  A
)  +P.  ( v  +P.  D ) ) )
6261adantr 274 . . . . . 6  |-  ( ( ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  /\  ( ( z  +P.  B )  =  ( w  +P.  A
)  /\  ( u  +P.  C )  =  ( v  +P.  D ) ) )  ->  (
( w  +P.  v
)  +P.  ( A  +P.  D ) )  =  ( ( w  +P.  A )  +P.  ( v  +P.  D ) ) )
6311, 39, 623eqtr4d 2183 . . . . 5  |-  ( ( ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  /\  ( ( z  +P.  B )  =  ( w  +P.  A
)  /\  ( u  +P.  C )  =  ( v  +P.  D ) ) )  ->  (
( z  +P.  u
)  +P.  ( B  +P.  C ) )  =  ( ( w  +P.  v )  +P.  ( A  +P.  D ) ) )
6463ex 114 . . . 4  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( ( z  +P.  B )  =  ( w  +P.  A )  /\  ( u  +P.  C )  =  ( v  +P.  D
) )  ->  (
( z  +P.  u
)  +P.  ( B  +P.  C ) )  =  ( ( w  +P.  v )  +P.  ( A  +P.  D ) ) ) )
659, 64sylbid 149 . . 3  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( [
<. z ,  w >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\ 
[ <. v ,  u >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  ->  (
( z  +P.  u
)  +P.  ( B  +P.  C ) )  =  ( ( w  +P.  v )  +P.  ( A  +P.  D ) ) ) )
66 ltaprg 7451 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  f  e.  P. )  ->  (
x  <P  y  <->  ( f  +P.  x )  <P  (
f  +P.  y )
) )
6766adantl 275 . . . 4  |-  ( ( ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  /\  ( x  e. 
P.  /\  y  e.  P.  /\  f  e.  P. ) )  ->  (
x  <P  y  <->  ( f  +P.  x )  <P  (
f  +P.  y )
) )
68 addclpr 7369 . . . . 5  |-  ( ( z  e.  P.  /\  u  e.  P. )  ->  ( z  +P.  u
)  e.  P. )
6924, 12, 68syl2anc 409 . . . 4  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( z  +P.  u )  e.  P. )
7030simprd 113 . . . 4  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( w  +P.  v )  e.  P. )
71 addcomprg 7410 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  +P.  y
)  =  ( y  +P.  x ) )
7271adantl 275 . . . 4  |-  ( ( ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  /\  ( x  e. 
P.  /\  y  e.  P. ) )  ->  (
x  +P.  y )  =  ( y  +P.  x ) )
7367, 69, 31, 70, 72, 54caovord3d 5949 . . 3  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( ( z  +P.  u )  +P.  ( B  +P.  C ) )  =  ( ( w  +P.  v
)  +P.  ( A  +P.  D ) )  -> 
( ( z  +P.  u )  <P  (
w  +P.  v )  <->  ( A  +P.  D ) 
<P  ( B  +P.  C
) ) ) )
7465, 73syld 45 . 2  |-  ( ( ( ( z  e. 
P.  /\  w  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. ) )  /\  ( ( v  e. 
P.  /\  u  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) ) )  ->  ( ( [
<. z ,  w >. ]  ~R  =  [ <. A ,  B >. ]  ~R  /\ 
[ <. v ,  u >. ]  ~R  =  [ <. C ,  D >. ]  ~R  )  ->  (
( z  +P.  u
)  <P  ( w  +P.  v )  <->  ( A  +P.  D )  <P  ( B  +P.  C ) ) ) )
751, 2, 3, 4, 74brecop 6527 1  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( [ <. A ,  B >. ]  ~R  <R  [ <. C ,  D >. ]  ~R  <->  ( A  +P.  D )  <P  ( B  +P.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   <.cop 3535   class class class wbr 3937  (class class class)co 5782   [cec 6435   P.cnp 7123    +P. cpp 7125    <P cltp 7127    ~R cer 7128   R.cnr 7129    <R cltr 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iplp 7300  df-iltp 7302  df-enr 7558  df-nr 7559  df-ltr 7562
This theorem is referenced by:  gt0srpr  7580  lttrsr  7594  ltposr  7595  ltsosr  7596  0lt1sr  7597  ltasrg  7602  aptisr  7611  mulextsr1  7613  archsr  7614  prsrlt  7619  ltpsrprg  7635  mappsrprg  7636  map2psrprg  7637  pitoregt0  7681
  Copyright terms: Public domain W3C validator