| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltsrprg | Unicode version | ||
| Description: Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.) |
| Ref | Expression |
|---|---|
| ltsrprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrex 7857 |
. 2
| |
| 2 | enrer 7855 |
. 2
| |
| 3 | df-nr 7847 |
. 2
| |
| 4 | df-ltr 7850 |
. 2
| |
| 5 | enreceq 7856 |
. . . . 5
| |
| 6 | enreceq 7856 |
. . . . . 6
| |
| 7 | eqcom 2208 |
. . . . . 6
| |
| 8 | 6, 7 | bitrdi 196 |
. . . . 5
|
| 9 | 5, 8 | bi2anan9 606 |
. . . 4
|
| 10 | oveq12 5960 |
. . . . . . 7
| |
| 11 | 10 | adantl 277 |
. . . . . 6
|
| 12 | simprlr 538 |
. . . . . . . . . . 11
| |
| 13 | simplrr 536 |
. . . . . . . . . . 11
| |
| 14 | addcomprg 7698 |
. . . . . . . . . . . 12
| |
| 15 | 14 | oveq1d 5966 |
. . . . . . . . . . 11
|
| 16 | 12, 13, 15 | syl2anc 411 |
. . . . . . . . . 10
|
| 17 | simprrl 539 |
. . . . . . . . . . 11
| |
| 18 | addassprg 7699 |
. . . . . . . . . . 11
| |
| 19 | 12, 13, 17, 18 | syl3anc 1250 |
. . . . . . . . . 10
|
| 20 | addassprg 7699 |
. . . . . . . . . . 11
| |
| 21 | 13, 12, 17, 20 | syl3anc 1250 |
. . . . . . . . . 10
|
| 22 | 16, 19, 21 | 3eqtr3d 2247 |
. . . . . . . . 9
|
| 23 | 22 | oveq2d 5967 |
. . . . . . . 8
|
| 24 | simplll 533 |
. . . . . . . . 9
| |
| 25 | addclpr 7657 |
. . . . . . . . . . . . 13
| |
| 26 | 25 | ad2ant2lr 510 |
. . . . . . . . . . . 12
|
| 27 | addclpr 7657 |
. . . . . . . . . . . . 13
| |
| 28 | 27 | ad2ant2lr 510 |
. . . . . . . . . . . 12
|
| 29 | 26, 28 | anim12ci 339 |
. . . . . . . . . . 11
|
| 30 | 29 | an4s 588 |
. . . . . . . . . 10
|
| 31 | 30 | simpld 112 |
. . . . . . . . 9
|
| 32 | addassprg 7699 |
. . . . . . . . 9
| |
| 33 | 24, 12, 31, 32 | syl3anc 1250 |
. . . . . . . 8
|
| 34 | addclpr 7657 |
. . . . . . . . . 10
| |
| 35 | 12, 17, 34 | syl2anc 411 |
. . . . . . . . 9
|
| 36 | addassprg 7699 |
. . . . . . . . 9
| |
| 37 | 24, 13, 35, 36 | syl3anc 1250 |
. . . . . . . 8
|
| 38 | 23, 33, 37 | 3eqtr4d 2249 |
. . . . . . 7
|
| 39 | 38 | adantr 276 |
. . . . . 6
|
| 40 | simprll 537 |
. . . . . . . . . . . 12
| |
| 41 | simplrl 535 |
. . . . . . . . . . . 12
| |
| 42 | addcomprg 7698 |
. . . . . . . . . . . 12
| |
| 43 | 40, 41, 42 | syl2anc 411 |
. . . . . . . . . . 11
|
| 44 | 43 | oveq1d 5966 |
. . . . . . . . . 10
|
| 45 | simprrr 540 |
. . . . . . . . . . 11
| |
| 46 | addassprg 7699 |
. . . . . . . . . . 11
| |
| 47 | 40, 41, 45, 46 | syl3anc 1250 |
. . . . . . . . . 10
|
| 48 | addassprg 7699 |
. . . . . . . . . . 11
| |
| 49 | 41, 40, 45, 48 | syl3anc 1250 |
. . . . . . . . . 10
|
| 50 | 44, 47, 49 | 3eqtr3d 2247 |
. . . . . . . . 9
|
| 51 | 50 | oveq2d 5967 |
. . . . . . . 8
|
| 52 | simpllr 534 |
. . . . . . . . 9
| |
| 53 | addclpr 7657 |
. . . . . . . . . 10
| |
| 54 | 41, 45, 53 | syl2anc 411 |
. . . . . . . . 9
|
| 55 | addassprg 7699 |
. . . . . . . . 9
| |
| 56 | 52, 40, 54, 55 | syl3anc 1250 |
. . . . . . . 8
|
| 57 | addclpr 7657 |
. . . . . . . . . 10
| |
| 58 | 40, 45, 57 | syl2anc 411 |
. . . . . . . . 9
|
| 59 | addassprg 7699 |
. . . . . . . . 9
| |
| 60 | 52, 41, 58, 59 | syl3anc 1250 |
. . . . . . . 8
|
| 61 | 51, 56, 60 | 3eqtr4d 2249 |
. . . . . . 7
|
| 62 | 61 | adantr 276 |
. . . . . 6
|
| 63 | 11, 39, 62 | 3eqtr4d 2249 |
. . . . 5
|
| 64 | 63 | ex 115 |
. . . 4
|
| 65 | 9, 64 | sylbid 150 |
. . 3
|
| 66 | ltaprg 7739 |
. . . . 5
| |
| 67 | 66 | adantl 277 |
. . . 4
|
| 68 | addclpr 7657 |
. . . . 5
| |
| 69 | 24, 12, 68 | syl2anc 411 |
. . . 4
|
| 70 | 30 | simprd 114 |
. . . 4
|
| 71 | addcomprg 7698 |
. . . . 5
| |
| 72 | 71 | adantl 277 |
. . . 4
|
| 73 | 67, 69, 31, 70, 72, 54 | caovord3d 6124 |
. . 3
|
| 74 | 65, 73 | syld 45 |
. 2
|
| 75 | 1, 2, 3, 4, 74 | brecop 6719 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-eprel 4340 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-1o 6509 df-2o 6510 df-oadd 6513 df-omul 6514 df-er 6627 df-ec 6629 df-qs 6633 df-ni 7424 df-pli 7425 df-mi 7426 df-lti 7427 df-plpq 7464 df-mpq 7465 df-enq 7467 df-nqqs 7468 df-plqqs 7469 df-mqqs 7470 df-1nqqs 7471 df-rq 7472 df-ltnqqs 7473 df-enq0 7544 df-nq0 7545 df-0nq0 7546 df-plq0 7547 df-mq0 7548 df-inp 7586 df-iplp 7588 df-iltp 7590 df-enr 7846 df-nr 7847 df-ltr 7850 |
| This theorem is referenced by: gt0srpr 7868 lttrsr 7882 ltposr 7883 ltsosr 7884 0lt1sr 7885 ltasrg 7890 aptisr 7899 mulextsr1 7901 archsr 7902 prsrlt 7907 ltpsrprg 7923 mappsrprg 7924 map2psrprg 7925 pitoregt0 7969 |
| Copyright terms: Public domain | W3C validator |