| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltsrprg | Unicode version | ||
| Description: Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.) |
| Ref | Expression |
|---|---|
| ltsrprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrex 7932 |
. 2
| |
| 2 | enrer 7930 |
. 2
| |
| 3 | df-nr 7922 |
. 2
| |
| 4 | df-ltr 7925 |
. 2
| |
| 5 | enreceq 7931 |
. . . . 5
| |
| 6 | enreceq 7931 |
. . . . . 6
| |
| 7 | eqcom 2231 |
. . . . . 6
| |
| 8 | 6, 7 | bitrdi 196 |
. . . . 5
|
| 9 | 5, 8 | bi2anan9 608 |
. . . 4
|
| 10 | oveq12 6016 |
. . . . . . 7
| |
| 11 | 10 | adantl 277 |
. . . . . 6
|
| 12 | simprlr 538 |
. . . . . . . . . . 11
| |
| 13 | simplrr 536 |
. . . . . . . . . . 11
| |
| 14 | addcomprg 7773 |
. . . . . . . . . . . 12
| |
| 15 | 14 | oveq1d 6022 |
. . . . . . . . . . 11
|
| 16 | 12, 13, 15 | syl2anc 411 |
. . . . . . . . . 10
|
| 17 | simprrl 539 |
. . . . . . . . . . 11
| |
| 18 | addassprg 7774 |
. . . . . . . . . . 11
| |
| 19 | 12, 13, 17, 18 | syl3anc 1271 |
. . . . . . . . . 10
|
| 20 | addassprg 7774 |
. . . . . . . . . . 11
| |
| 21 | 13, 12, 17, 20 | syl3anc 1271 |
. . . . . . . . . 10
|
| 22 | 16, 19, 21 | 3eqtr3d 2270 |
. . . . . . . . 9
|
| 23 | 22 | oveq2d 6023 |
. . . . . . . 8
|
| 24 | simplll 533 |
. . . . . . . . 9
| |
| 25 | addclpr 7732 |
. . . . . . . . . . . . 13
| |
| 26 | 25 | ad2ant2lr 510 |
. . . . . . . . . . . 12
|
| 27 | addclpr 7732 |
. . . . . . . . . . . . 13
| |
| 28 | 27 | ad2ant2lr 510 |
. . . . . . . . . . . 12
|
| 29 | 26, 28 | anim12ci 339 |
. . . . . . . . . . 11
|
| 30 | 29 | an4s 590 |
. . . . . . . . . 10
|
| 31 | 30 | simpld 112 |
. . . . . . . . 9
|
| 32 | addassprg 7774 |
. . . . . . . . 9
| |
| 33 | 24, 12, 31, 32 | syl3anc 1271 |
. . . . . . . 8
|
| 34 | addclpr 7732 |
. . . . . . . . . 10
| |
| 35 | 12, 17, 34 | syl2anc 411 |
. . . . . . . . 9
|
| 36 | addassprg 7774 |
. . . . . . . . 9
| |
| 37 | 24, 13, 35, 36 | syl3anc 1271 |
. . . . . . . 8
|
| 38 | 23, 33, 37 | 3eqtr4d 2272 |
. . . . . . 7
|
| 39 | 38 | adantr 276 |
. . . . . 6
|
| 40 | simprll 537 |
. . . . . . . . . . . 12
| |
| 41 | simplrl 535 |
. . . . . . . . . . . 12
| |
| 42 | addcomprg 7773 |
. . . . . . . . . . . 12
| |
| 43 | 40, 41, 42 | syl2anc 411 |
. . . . . . . . . . 11
|
| 44 | 43 | oveq1d 6022 |
. . . . . . . . . 10
|
| 45 | simprrr 540 |
. . . . . . . . . . 11
| |
| 46 | addassprg 7774 |
. . . . . . . . . . 11
| |
| 47 | 40, 41, 45, 46 | syl3anc 1271 |
. . . . . . . . . 10
|
| 48 | addassprg 7774 |
. . . . . . . . . . 11
| |
| 49 | 41, 40, 45, 48 | syl3anc 1271 |
. . . . . . . . . 10
|
| 50 | 44, 47, 49 | 3eqtr3d 2270 |
. . . . . . . . 9
|
| 51 | 50 | oveq2d 6023 |
. . . . . . . 8
|
| 52 | simpllr 534 |
. . . . . . . . 9
| |
| 53 | addclpr 7732 |
. . . . . . . . . 10
| |
| 54 | 41, 45, 53 | syl2anc 411 |
. . . . . . . . 9
|
| 55 | addassprg 7774 |
. . . . . . . . 9
| |
| 56 | 52, 40, 54, 55 | syl3anc 1271 |
. . . . . . . 8
|
| 57 | addclpr 7732 |
. . . . . . . . . 10
| |
| 58 | 40, 45, 57 | syl2anc 411 |
. . . . . . . . 9
|
| 59 | addassprg 7774 |
. . . . . . . . 9
| |
| 60 | 52, 41, 58, 59 | syl3anc 1271 |
. . . . . . . 8
|
| 61 | 51, 56, 60 | 3eqtr4d 2272 |
. . . . . . 7
|
| 62 | 61 | adantr 276 |
. . . . . 6
|
| 63 | 11, 39, 62 | 3eqtr4d 2272 |
. . . . 5
|
| 64 | 63 | ex 115 |
. . . 4
|
| 65 | 9, 64 | sylbid 150 |
. . 3
|
| 66 | ltaprg 7814 |
. . . . 5
| |
| 67 | 66 | adantl 277 |
. . . 4
|
| 68 | addclpr 7732 |
. . . . 5
| |
| 69 | 24, 12, 68 | syl2anc 411 |
. . . 4
|
| 70 | 30 | simprd 114 |
. . . 4
|
| 71 | addcomprg 7773 |
. . . . 5
| |
| 72 | 71 | adantl 277 |
. . . 4
|
| 73 | 67, 69, 31, 70, 72, 54 | caovord3d 6182 |
. . 3
|
| 74 | 65, 73 | syld 45 |
. 2
|
| 75 | 1, 2, 3, 4, 74 | brecop 6780 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-1o 6568 df-2o 6569 df-oadd 6572 df-omul 6573 df-er 6688 df-ec 6690 df-qs 6694 df-ni 7499 df-pli 7500 df-mi 7501 df-lti 7502 df-plpq 7539 df-mpq 7540 df-enq 7542 df-nqqs 7543 df-plqqs 7544 df-mqqs 7545 df-1nqqs 7546 df-rq 7547 df-ltnqqs 7548 df-enq0 7619 df-nq0 7620 df-0nq0 7621 df-plq0 7622 df-mq0 7623 df-inp 7661 df-iplp 7663 df-iltp 7665 df-enr 7921 df-nr 7922 df-ltr 7925 |
| This theorem is referenced by: gt0srpr 7943 lttrsr 7957 ltposr 7958 ltsosr 7959 0lt1sr 7960 ltasrg 7965 aptisr 7974 mulextsr1 7976 archsr 7977 prsrlt 7982 ltpsrprg 7998 mappsrprg 7999 map2psrprg 8000 pitoregt0 8044 |
| Copyright terms: Public domain | W3C validator |