| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ltsrprg | Unicode version | ||
| Description: Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.) | 
| Ref | Expression | 
|---|---|
| ltsrprg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | enrex 7804 | 
. 2
 | |
| 2 | enrer 7802 | 
. 2
 | |
| 3 | df-nr 7794 | 
. 2
 | |
| 4 | df-ltr 7797 | 
. 2
 | |
| 5 | enreceq 7803 | 
. . . . 5
 | |
| 6 | enreceq 7803 | 
. . . . . 6
 | |
| 7 | eqcom 2198 | 
. . . . . 6
 | |
| 8 | 6, 7 | bitrdi 196 | 
. . . . 5
 | 
| 9 | 5, 8 | bi2anan9 606 | 
. . . 4
 | 
| 10 | oveq12 5931 | 
. . . . . . 7
 | |
| 11 | 10 | adantl 277 | 
. . . . . 6
 | 
| 12 | simprlr 538 | 
. . . . . . . . . . 11
 | |
| 13 | simplrr 536 | 
. . . . . . . . . . 11
 | |
| 14 | addcomprg 7645 | 
. . . . . . . . . . . 12
 | |
| 15 | 14 | oveq1d 5937 | 
. . . . . . . . . . 11
 | 
| 16 | 12, 13, 15 | syl2anc 411 | 
. . . . . . . . . 10
 | 
| 17 | simprrl 539 | 
. . . . . . . . . . 11
 | |
| 18 | addassprg 7646 | 
. . . . . . . . . . 11
 | |
| 19 | 12, 13, 17, 18 | syl3anc 1249 | 
. . . . . . . . . 10
 | 
| 20 | addassprg 7646 | 
. . . . . . . . . . 11
 | |
| 21 | 13, 12, 17, 20 | syl3anc 1249 | 
. . . . . . . . . 10
 | 
| 22 | 16, 19, 21 | 3eqtr3d 2237 | 
. . . . . . . . 9
 | 
| 23 | 22 | oveq2d 5938 | 
. . . . . . . 8
 | 
| 24 | simplll 533 | 
. . . . . . . . 9
 | |
| 25 | addclpr 7604 | 
. . . . . . . . . . . . 13
 | |
| 26 | 25 | ad2ant2lr 510 | 
. . . . . . . . . . . 12
 | 
| 27 | addclpr 7604 | 
. . . . . . . . . . . . 13
 | |
| 28 | 27 | ad2ant2lr 510 | 
. . . . . . . . . . . 12
 | 
| 29 | 26, 28 | anim12ci 339 | 
. . . . . . . . . . 11
 | 
| 30 | 29 | an4s 588 | 
. . . . . . . . . 10
 | 
| 31 | 30 | simpld 112 | 
. . . . . . . . 9
 | 
| 32 | addassprg 7646 | 
. . . . . . . . 9
 | |
| 33 | 24, 12, 31, 32 | syl3anc 1249 | 
. . . . . . . 8
 | 
| 34 | addclpr 7604 | 
. . . . . . . . . 10
 | |
| 35 | 12, 17, 34 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 36 | addassprg 7646 | 
. . . . . . . . 9
 | |
| 37 | 24, 13, 35, 36 | syl3anc 1249 | 
. . . . . . . 8
 | 
| 38 | 23, 33, 37 | 3eqtr4d 2239 | 
. . . . . . 7
 | 
| 39 | 38 | adantr 276 | 
. . . . . 6
 | 
| 40 | simprll 537 | 
. . . . . . . . . . . 12
 | |
| 41 | simplrl 535 | 
. . . . . . . . . . . 12
 | |
| 42 | addcomprg 7645 | 
. . . . . . . . . . . 12
 | |
| 43 | 40, 41, 42 | syl2anc 411 | 
. . . . . . . . . . 11
 | 
| 44 | 43 | oveq1d 5937 | 
. . . . . . . . . 10
 | 
| 45 | simprrr 540 | 
. . . . . . . . . . 11
 | |
| 46 | addassprg 7646 | 
. . . . . . . . . . 11
 | |
| 47 | 40, 41, 45, 46 | syl3anc 1249 | 
. . . . . . . . . 10
 | 
| 48 | addassprg 7646 | 
. . . . . . . . . . 11
 | |
| 49 | 41, 40, 45, 48 | syl3anc 1249 | 
. . . . . . . . . 10
 | 
| 50 | 44, 47, 49 | 3eqtr3d 2237 | 
. . . . . . . . 9
 | 
| 51 | 50 | oveq2d 5938 | 
. . . . . . . 8
 | 
| 52 | simpllr 534 | 
. . . . . . . . 9
 | |
| 53 | addclpr 7604 | 
. . . . . . . . . 10
 | |
| 54 | 41, 45, 53 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 55 | addassprg 7646 | 
. . . . . . . . 9
 | |
| 56 | 52, 40, 54, 55 | syl3anc 1249 | 
. . . . . . . 8
 | 
| 57 | addclpr 7604 | 
. . . . . . . . . 10
 | |
| 58 | 40, 45, 57 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 59 | addassprg 7646 | 
. . . . . . . . 9
 | |
| 60 | 52, 41, 58, 59 | syl3anc 1249 | 
. . . . . . . 8
 | 
| 61 | 51, 56, 60 | 3eqtr4d 2239 | 
. . . . . . 7
 | 
| 62 | 61 | adantr 276 | 
. . . . . 6
 | 
| 63 | 11, 39, 62 | 3eqtr4d 2239 | 
. . . . 5
 | 
| 64 | 63 | ex 115 | 
. . . 4
 | 
| 65 | 9, 64 | sylbid 150 | 
. . 3
 | 
| 66 | ltaprg 7686 | 
. . . . 5
 | |
| 67 | 66 | adantl 277 | 
. . . 4
 | 
| 68 | addclpr 7604 | 
. . . . 5
 | |
| 69 | 24, 12, 68 | syl2anc 411 | 
. . . 4
 | 
| 70 | 30 | simprd 114 | 
. . . 4
 | 
| 71 | addcomprg 7645 | 
. . . . 5
 | |
| 72 | 71 | adantl 277 | 
. . . 4
 | 
| 73 | 67, 69, 31, 70, 72, 54 | caovord3d 6094 | 
. . 3
 | 
| 74 | 65, 73 | syld 45 | 
. 2
 | 
| 75 | 1, 2, 3, 4, 74 | brecop 6684 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-2o 6475 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-enq0 7491 df-nq0 7492 df-0nq0 7493 df-plq0 7494 df-mq0 7495 df-inp 7533 df-iplp 7535 df-iltp 7537 df-enr 7793 df-nr 7794 df-ltr 7797 | 
| This theorem is referenced by: gt0srpr 7815 lttrsr 7829 ltposr 7830 ltsosr 7831 0lt1sr 7832 ltasrg 7837 aptisr 7846 mulextsr1 7848 archsr 7849 prsrlt 7854 ltpsrprg 7870 mappsrprg 7871 map2psrprg 7872 pitoregt0 7916 | 
| Copyright terms: Public domain | W3C validator |