Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltsrprg | Unicode version |
Description: Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.) |
Ref | Expression |
---|---|
ltsrprg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrex 7678 | . 2 | |
2 | enrer 7676 | . 2 | |
3 | df-nr 7668 | . 2 | |
4 | df-ltr 7671 | . 2 | |
5 | enreceq 7677 | . . . . 5 | |
6 | enreceq 7677 | . . . . . 6 | |
7 | eqcom 2167 | . . . . . 6 | |
8 | 6, 7 | bitrdi 195 | . . . . 5 |
9 | 5, 8 | bi2anan9 596 | . . . 4 |
10 | oveq12 5851 | . . . . . . 7 | |
11 | 10 | adantl 275 | . . . . . 6 |
12 | simprlr 528 | . . . . . . . . . . 11 | |
13 | simplrr 526 | . . . . . . . . . . 11 | |
14 | addcomprg 7519 | . . . . . . . . . . . 12 | |
15 | 14 | oveq1d 5857 | . . . . . . . . . . 11 |
16 | 12, 13, 15 | syl2anc 409 | . . . . . . . . . 10 |
17 | simprrl 529 | . . . . . . . . . . 11 | |
18 | addassprg 7520 | . . . . . . . . . . 11 | |
19 | 12, 13, 17, 18 | syl3anc 1228 | . . . . . . . . . 10 |
20 | addassprg 7520 | . . . . . . . . . . 11 | |
21 | 13, 12, 17, 20 | syl3anc 1228 | . . . . . . . . . 10 |
22 | 16, 19, 21 | 3eqtr3d 2206 | . . . . . . . . 9 |
23 | 22 | oveq2d 5858 | . . . . . . . 8 |
24 | simplll 523 | . . . . . . . . 9 | |
25 | addclpr 7478 | . . . . . . . . . . . . 13 | |
26 | 25 | ad2ant2lr 502 | . . . . . . . . . . . 12 |
27 | addclpr 7478 | . . . . . . . . . . . . 13 | |
28 | 27 | ad2ant2lr 502 | . . . . . . . . . . . 12 |
29 | 26, 28 | anim12ci 337 | . . . . . . . . . . 11 |
30 | 29 | an4s 578 | . . . . . . . . . 10 |
31 | 30 | simpld 111 | . . . . . . . . 9 |
32 | addassprg 7520 | . . . . . . . . 9 | |
33 | 24, 12, 31, 32 | syl3anc 1228 | . . . . . . . 8 |
34 | addclpr 7478 | . . . . . . . . . 10 | |
35 | 12, 17, 34 | syl2anc 409 | . . . . . . . . 9 |
36 | addassprg 7520 | . . . . . . . . 9 | |
37 | 24, 13, 35, 36 | syl3anc 1228 | . . . . . . . 8 |
38 | 23, 33, 37 | 3eqtr4d 2208 | . . . . . . 7 |
39 | 38 | adantr 274 | . . . . . 6 |
40 | simprll 527 | . . . . . . . . . . . 12 | |
41 | simplrl 525 | . . . . . . . . . . . 12 | |
42 | addcomprg 7519 | . . . . . . . . . . . 12 | |
43 | 40, 41, 42 | syl2anc 409 | . . . . . . . . . . 11 |
44 | 43 | oveq1d 5857 | . . . . . . . . . 10 |
45 | simprrr 530 | . . . . . . . . . . 11 | |
46 | addassprg 7520 | . . . . . . . . . . 11 | |
47 | 40, 41, 45, 46 | syl3anc 1228 | . . . . . . . . . 10 |
48 | addassprg 7520 | . . . . . . . . . . 11 | |
49 | 41, 40, 45, 48 | syl3anc 1228 | . . . . . . . . . 10 |
50 | 44, 47, 49 | 3eqtr3d 2206 | . . . . . . . . 9 |
51 | 50 | oveq2d 5858 | . . . . . . . 8 |
52 | simpllr 524 | . . . . . . . . 9 | |
53 | addclpr 7478 | . . . . . . . . . 10 | |
54 | 41, 45, 53 | syl2anc 409 | . . . . . . . . 9 |
55 | addassprg 7520 | . . . . . . . . 9 | |
56 | 52, 40, 54, 55 | syl3anc 1228 | . . . . . . . 8 |
57 | addclpr 7478 | . . . . . . . . . 10 | |
58 | 40, 45, 57 | syl2anc 409 | . . . . . . . . 9 |
59 | addassprg 7520 | . . . . . . . . 9 | |
60 | 52, 41, 58, 59 | syl3anc 1228 | . . . . . . . 8 |
61 | 51, 56, 60 | 3eqtr4d 2208 | . . . . . . 7 |
62 | 61 | adantr 274 | . . . . . 6 |
63 | 11, 39, 62 | 3eqtr4d 2208 | . . . . 5 |
64 | 63 | ex 114 | . . . 4 |
65 | 9, 64 | sylbid 149 | . . 3 |
66 | ltaprg 7560 | . . . . 5 | |
67 | 66 | adantl 275 | . . . 4 |
68 | addclpr 7478 | . . . . 5 | |
69 | 24, 12, 68 | syl2anc 409 | . . . 4 |
70 | 30 | simprd 113 | . . . 4 |
71 | addcomprg 7519 | . . . . 5 | |
72 | 71 | adantl 275 | . . . 4 |
73 | 67, 69, 31, 70, 72, 54 | caovord3d 6012 | . . 3 |
74 | 65, 73 | syld 45 | . 2 |
75 | 1, 2, 3, 4, 74 | brecop 6591 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 cop 3579 class class class wbr 3982 (class class class)co 5842 cec 6499 cnp 7232 cpp 7234 cltp 7236 cer 7237 cnr 7238 cltr 7244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-2o 6385 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-enq0 7365 df-nq0 7366 df-0nq0 7367 df-plq0 7368 df-mq0 7369 df-inp 7407 df-iplp 7409 df-iltp 7411 df-enr 7667 df-nr 7668 df-ltr 7671 |
This theorem is referenced by: gt0srpr 7689 lttrsr 7703 ltposr 7704 ltsosr 7705 0lt1sr 7706 ltasrg 7711 aptisr 7720 mulextsr1 7722 archsr 7723 prsrlt 7728 ltpsrprg 7744 mappsrprg 7745 map2psrprg 7746 pitoregt0 7790 |
Copyright terms: Public domain | W3C validator |