| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltsrprg | Unicode version | ||
| Description: Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.) |
| Ref | Expression |
|---|---|
| ltsrprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrex 7892 |
. 2
| |
| 2 | enrer 7890 |
. 2
| |
| 3 | df-nr 7882 |
. 2
| |
| 4 | df-ltr 7885 |
. 2
| |
| 5 | enreceq 7891 |
. . . . 5
| |
| 6 | enreceq 7891 |
. . . . . 6
| |
| 7 | eqcom 2211 |
. . . . . 6
| |
| 8 | 6, 7 | bitrdi 196 |
. . . . 5
|
| 9 | 5, 8 | bi2anan9 608 |
. . . 4
|
| 10 | oveq12 5983 |
. . . . . . 7
| |
| 11 | 10 | adantl 277 |
. . . . . 6
|
| 12 | simprlr 538 |
. . . . . . . . . . 11
| |
| 13 | simplrr 536 |
. . . . . . . . . . 11
| |
| 14 | addcomprg 7733 |
. . . . . . . . . . . 12
| |
| 15 | 14 | oveq1d 5989 |
. . . . . . . . . . 11
|
| 16 | 12, 13, 15 | syl2anc 411 |
. . . . . . . . . 10
|
| 17 | simprrl 539 |
. . . . . . . . . . 11
| |
| 18 | addassprg 7734 |
. . . . . . . . . . 11
| |
| 19 | 12, 13, 17, 18 | syl3anc 1252 |
. . . . . . . . . 10
|
| 20 | addassprg 7734 |
. . . . . . . . . . 11
| |
| 21 | 13, 12, 17, 20 | syl3anc 1252 |
. . . . . . . . . 10
|
| 22 | 16, 19, 21 | 3eqtr3d 2250 |
. . . . . . . . 9
|
| 23 | 22 | oveq2d 5990 |
. . . . . . . 8
|
| 24 | simplll 533 |
. . . . . . . . 9
| |
| 25 | addclpr 7692 |
. . . . . . . . . . . . 13
| |
| 26 | 25 | ad2ant2lr 510 |
. . . . . . . . . . . 12
|
| 27 | addclpr 7692 |
. . . . . . . . . . . . 13
| |
| 28 | 27 | ad2ant2lr 510 |
. . . . . . . . . . . 12
|
| 29 | 26, 28 | anim12ci 339 |
. . . . . . . . . . 11
|
| 30 | 29 | an4s 590 |
. . . . . . . . . 10
|
| 31 | 30 | simpld 112 |
. . . . . . . . 9
|
| 32 | addassprg 7734 |
. . . . . . . . 9
| |
| 33 | 24, 12, 31, 32 | syl3anc 1252 |
. . . . . . . 8
|
| 34 | addclpr 7692 |
. . . . . . . . . 10
| |
| 35 | 12, 17, 34 | syl2anc 411 |
. . . . . . . . 9
|
| 36 | addassprg 7734 |
. . . . . . . . 9
| |
| 37 | 24, 13, 35, 36 | syl3anc 1252 |
. . . . . . . 8
|
| 38 | 23, 33, 37 | 3eqtr4d 2252 |
. . . . . . 7
|
| 39 | 38 | adantr 276 |
. . . . . 6
|
| 40 | simprll 537 |
. . . . . . . . . . . 12
| |
| 41 | simplrl 535 |
. . . . . . . . . . . 12
| |
| 42 | addcomprg 7733 |
. . . . . . . . . . . 12
| |
| 43 | 40, 41, 42 | syl2anc 411 |
. . . . . . . . . . 11
|
| 44 | 43 | oveq1d 5989 |
. . . . . . . . . 10
|
| 45 | simprrr 540 |
. . . . . . . . . . 11
| |
| 46 | addassprg 7734 |
. . . . . . . . . . 11
| |
| 47 | 40, 41, 45, 46 | syl3anc 1252 |
. . . . . . . . . 10
|
| 48 | addassprg 7734 |
. . . . . . . . . . 11
| |
| 49 | 41, 40, 45, 48 | syl3anc 1252 |
. . . . . . . . . 10
|
| 50 | 44, 47, 49 | 3eqtr3d 2250 |
. . . . . . . . 9
|
| 51 | 50 | oveq2d 5990 |
. . . . . . . 8
|
| 52 | simpllr 534 |
. . . . . . . . 9
| |
| 53 | addclpr 7692 |
. . . . . . . . . 10
| |
| 54 | 41, 45, 53 | syl2anc 411 |
. . . . . . . . 9
|
| 55 | addassprg 7734 |
. . . . . . . . 9
| |
| 56 | 52, 40, 54, 55 | syl3anc 1252 |
. . . . . . . 8
|
| 57 | addclpr 7692 |
. . . . . . . . . 10
| |
| 58 | 40, 45, 57 | syl2anc 411 |
. . . . . . . . 9
|
| 59 | addassprg 7734 |
. . . . . . . . 9
| |
| 60 | 52, 41, 58, 59 | syl3anc 1252 |
. . . . . . . 8
|
| 61 | 51, 56, 60 | 3eqtr4d 2252 |
. . . . . . 7
|
| 62 | 61 | adantr 276 |
. . . . . 6
|
| 63 | 11, 39, 62 | 3eqtr4d 2252 |
. . . . 5
|
| 64 | 63 | ex 115 |
. . . 4
|
| 65 | 9, 64 | sylbid 150 |
. . 3
|
| 66 | ltaprg 7774 |
. . . . 5
| |
| 67 | 66 | adantl 277 |
. . . 4
|
| 68 | addclpr 7692 |
. . . . 5
| |
| 69 | 24, 12, 68 | syl2anc 411 |
. . . 4
|
| 70 | 30 | simprd 114 |
. . . 4
|
| 71 | addcomprg 7733 |
. . . . 5
| |
| 72 | 71 | adantl 277 |
. . . 4
|
| 73 | 67, 69, 31, 70, 72, 54 | caovord3d 6147 |
. . 3
|
| 74 | 65, 73 | syld 45 |
. 2
|
| 75 | 1, 2, 3, 4, 74 | brecop 6742 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-eprel 4357 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-1o 6532 df-2o 6533 df-oadd 6536 df-omul 6537 df-er 6650 df-ec 6652 df-qs 6656 df-ni 7459 df-pli 7460 df-mi 7461 df-lti 7462 df-plpq 7499 df-mpq 7500 df-enq 7502 df-nqqs 7503 df-plqqs 7504 df-mqqs 7505 df-1nqqs 7506 df-rq 7507 df-ltnqqs 7508 df-enq0 7579 df-nq0 7580 df-0nq0 7581 df-plq0 7582 df-mq0 7583 df-inp 7621 df-iplp 7623 df-iltp 7625 df-enr 7881 df-nr 7882 df-ltr 7885 |
| This theorem is referenced by: gt0srpr 7903 lttrsr 7917 ltposr 7918 ltsosr 7919 0lt1sr 7920 ltasrg 7925 aptisr 7934 mulextsr1 7936 archsr 7937 prsrlt 7942 ltpsrprg 7958 mappsrprg 7959 map2psrprg 7960 pitoregt0 8004 |
| Copyright terms: Public domain | W3C validator |