| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovord3d | GIF version | ||
| Description: Ordering law. (Contributed by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| caovordg.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) |
| caovordd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| caovordd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| caovordd.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| caovord2d.com | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) |
| caovord3d.5 | ⊢ (𝜑 → 𝐷 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| caovord3d | ⊢ (𝜑 → ((𝐴𝐹𝐵) = (𝐶𝐹𝐷) → (𝐴𝑅𝐶 ↔ 𝐷𝑅𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4062 | . 2 ⊢ ((𝐴𝐹𝐵) = (𝐶𝐹𝐷) → ((𝐴𝐹𝐵)𝑅(𝐶𝐹𝐵) ↔ (𝐶𝐹𝐷)𝑅(𝐶𝐹𝐵))) | |
| 2 | caovordg.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) | |
| 3 | caovordd.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 4 | caovordd.4 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
| 5 | caovordd.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 6 | caovord2d.com | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) = (𝑦𝐹𝑥)) | |
| 7 | 2, 3, 4, 5, 6 | caovord2d 6139 | . . 3 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ (𝐴𝐹𝐵)𝑅(𝐶𝐹𝐵))) |
| 8 | caovord3d.5 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑆) | |
| 9 | 2, 8, 5, 4 | caovordd 6138 | . . 3 ⊢ (𝜑 → (𝐷𝑅𝐵 ↔ (𝐶𝐹𝐷)𝑅(𝐶𝐹𝐵))) |
| 10 | 7, 9 | bibi12d 235 | . 2 ⊢ (𝜑 → ((𝐴𝑅𝐶 ↔ 𝐷𝑅𝐵) ↔ ((𝐴𝐹𝐵)𝑅(𝐶𝐹𝐵) ↔ (𝐶𝐹𝐷)𝑅(𝐶𝐹𝐵)))) |
| 11 | 1, 10 | imbitrrid 156 | 1 ⊢ (𝜑 → ((𝐴𝐹𝐵) = (𝐶𝐹𝐷) → (𝐴𝑅𝐶 ↔ 𝐷𝑅𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 class class class wbr 4059 (class class class)co 5967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: ordpipqqs 7522 ltsrprg 7895 |
| Copyright terms: Public domain | W3C validator |