| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovordig | GIF version | ||
| Description: Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| caovordig.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) |
| Ref | Expression |
|---|---|
| caovordig | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovordig.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) | |
| 2 | 1 | ralrimivvva 2591 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) |
| 3 | breq1 4062 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝑅𝑦 ↔ 𝐴𝑅𝑦)) | |
| 4 | oveq2 5975 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑧𝐹𝑥) = (𝑧𝐹𝐴)) | |
| 5 | 4 | breq1d 4069 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦) ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦))) |
| 6 | 3, 5 | imbi12d 234 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)) ↔ (𝐴𝑅𝑦 → (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦)))) |
| 7 | breq2 4063 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝑅𝑦 ↔ 𝐴𝑅𝐵)) | |
| 8 | oveq2 5975 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑧𝐹𝑦) = (𝑧𝐹𝐵)) | |
| 9 | 8 | breq2d 4071 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦) ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵))) |
| 10 | 7, 9 | imbi12d 234 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝑅𝑦 → (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦)) ↔ (𝐴𝑅𝐵 → (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵)))) |
| 11 | oveq1 5974 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝑧𝐹𝐴) = (𝐶𝐹𝐴)) | |
| 12 | oveq1 5974 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝑧𝐹𝐵) = (𝐶𝐹𝐵)) | |
| 13 | 11, 12 | breq12d 4072 | . . . 4 ⊢ (𝑧 = 𝐶 → ((𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵) ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
| 14 | 13 | imbi2d 230 | . . 3 ⊢ (𝑧 = 𝐶 → ((𝐴𝑅𝐵 → (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵)) ↔ (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))) |
| 15 | 6, 10, 14 | rspc3v 2900 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)) → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))) |
| 16 | 2, 15 | mpan9 281 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 ∀wral 2486 class class class wbr 4059 (class class class)co 5967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: caovordid 6136 |
| Copyright terms: Public domain | W3C validator |