ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovordig GIF version

Theorem caovordig 6135
Description: Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014.)
Hypothesis
Ref Expression
caovordig.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
Assertion
Ref Expression
caovordig ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovordig
StepHypRef Expression
1 caovordig.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
21ralrimivvva 2591 . 2 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑧𝑆 (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
3 breq1 4062 . . . 4 (𝑥 = 𝐴 → (𝑥𝑅𝑦𝐴𝑅𝑦))
4 oveq2 5975 . . . . 5 (𝑥 = 𝐴 → (𝑧𝐹𝑥) = (𝑧𝐹𝐴))
54breq1d 4069 . . . 4 (𝑥 = 𝐴 → ((𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦) ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦)))
63, 5imbi12d 234 . . 3 (𝑥 = 𝐴 → ((𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)) ↔ (𝐴𝑅𝑦 → (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦))))
7 breq2 4063 . . . 4 (𝑦 = 𝐵 → (𝐴𝑅𝑦𝐴𝑅𝐵))
8 oveq2 5975 . . . . 5 (𝑦 = 𝐵 → (𝑧𝐹𝑦) = (𝑧𝐹𝐵))
98breq2d 4071 . . . 4 (𝑦 = 𝐵 → ((𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦) ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵)))
107, 9imbi12d 234 . . 3 (𝑦 = 𝐵 → ((𝐴𝑅𝑦 → (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦)) ↔ (𝐴𝑅𝐵 → (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵))))
11 oveq1 5974 . . . . 5 (𝑧 = 𝐶 → (𝑧𝐹𝐴) = (𝐶𝐹𝐴))
12 oveq1 5974 . . . . 5 (𝑧 = 𝐶 → (𝑧𝐹𝐵) = (𝐶𝐹𝐵))
1311, 12breq12d 4072 . . . 4 (𝑧 = 𝐶 → ((𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵) ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
1413imbi2d 230 . . 3 (𝑧 = 𝐶 → ((𝐴𝑅𝐵 → (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵)) ↔ (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))))
156, 10, 14rspc3v 2900 . 2 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (∀𝑥𝑆𝑦𝑆𝑧𝑆 (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)) → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))))
162, 15mpan9 281 1 ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2178  wral 2486   class class class wbr 4059  (class class class)co 5967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970
This theorem is referenced by:  caovordid  6136
  Copyright terms: Public domain W3C validator