ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmpossx Unicode version

Theorem dmmpossx 6178
Description: The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypothesis
Ref Expression
fmpox.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
dmmpossx  |-  dom  F  C_ 
U_ x  e.  A  ( { x }  X.  B )
Distinct variable groups:    x, y, A   
y, B
Allowed substitution hints:    B( x)    C( x, y)    F( x, y)

Proof of Theorem dmmpossx
Dummy variables  u  t  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2312 . . . . 5  |-  F/_ u B
2 nfcsb1v 3082 . . . . 5  |-  F/_ x [_ u  /  x ]_ B
3 nfcv 2312 . . . . 5  |-  F/_ u C
4 nfcv 2312 . . . . 5  |-  F/_ v C
5 nfcsb1v 3082 . . . . 5  |-  F/_ x [_ u  /  x ]_ [_ v  /  y ]_ C
6 nfcv 2312 . . . . . 6  |-  F/_ y
u
7 nfcsb1v 3082 . . . . . 6  |-  F/_ y [_ v  /  y ]_ C
86, 7nfcsb 3086 . . . . 5  |-  F/_ y [_ u  /  x ]_ [_ v  /  y ]_ C
9 csbeq1a 3058 . . . . 5  |-  ( x  =  u  ->  B  =  [_ u  /  x ]_ B )
10 csbeq1a 3058 . . . . . 6  |-  ( y  =  v  ->  C  =  [_ v  /  y ]_ C )
11 csbeq1a 3058 . . . . . 6  |-  ( x  =  u  ->  [_ v  /  y ]_ C  =  [_ u  /  x ]_ [_ v  /  y ]_ C )
1210, 11sylan9eqr 2225 . . . . 5  |-  ( ( x  =  u  /\  y  =  v )  ->  C  =  [_ u  /  x ]_ [_ v  /  y ]_ C
)
131, 2, 3, 4, 5, 8, 9, 12cbvmpox 5931 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( u  e.  A ,  v  e. 
[_ u  /  x ]_ B  |->  [_ u  /  x ]_ [_ v  /  y ]_ C
)
14 fmpox.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
15 vex 2733 . . . . . . . 8  |-  u  e. 
_V
16 vex 2733 . . . . . . . 8  |-  v  e. 
_V
1715, 16op1std 6127 . . . . . . 7  |-  ( t  =  <. u ,  v
>.  ->  ( 1st `  t
)  =  u )
1817csbeq1d 3056 . . . . . 6  |-  ( t  =  <. u ,  v
>.  ->  [_ ( 1st `  t
)  /  x ]_ [_ ( 2nd `  t
)  /  y ]_ C  =  [_ u  /  x ]_ [_ ( 2nd `  t )  /  y ]_ C )
1915, 16op2ndd 6128 . . . . . . . 8  |-  ( t  =  <. u ,  v
>.  ->  ( 2nd `  t
)  =  v )
2019csbeq1d 3056 . . . . . . 7  |-  ( t  =  <. u ,  v
>.  ->  [_ ( 2nd `  t
)  /  y ]_ C  =  [_ v  / 
y ]_ C )
2120csbeq2dv 3075 . . . . . 6  |-  ( t  =  <. u ,  v
>.  ->  [_ u  /  x ]_ [_ ( 2nd `  t
)  /  y ]_ C  =  [_ u  /  x ]_ [_ v  / 
y ]_ C )
2218, 21eqtrd 2203 . . . . 5  |-  ( t  =  <. u ,  v
>.  ->  [_ ( 1st `  t
)  /  x ]_ [_ ( 2nd `  t
)  /  y ]_ C  =  [_ u  /  x ]_ [_ v  / 
y ]_ C )
2322mpomptx 5944 . . . 4  |-  ( t  e.  U_ u  e.  A  ( { u }  X.  [_ u  /  x ]_ B )  |->  [_ ( 1st `  t )  /  x ]_ [_ ( 2nd `  t )  / 
y ]_ C )  =  ( u  e.  A ,  v  e.  [_ u  /  x ]_ B  |->  [_ u  /  x ]_ [_ v  /  y ]_ C
)
2413, 14, 233eqtr4i 2201 . . 3  |-  F  =  ( t  e.  U_ u  e.  A  ( { u }  X.  [_ u  /  x ]_ B )  |->  [_ ( 1st `  t )  /  x ]_ [_ ( 2nd `  t )  /  y ]_ C )
2524dmmptss 5107 . 2  |-  dom  F  C_ 
U_ u  e.  A  ( { u }  X.  [_ u  /  x ]_ B )
26 nfcv 2312 . . 3  |-  F/_ u
( { x }  X.  B )
27 nfcv 2312 . . . 4  |-  F/_ x { u }
2827, 2nfxp 4638 . . 3  |-  F/_ x
( { u }  X.  [_ u  /  x ]_ B )
29 sneq 3594 . . . 4  |-  ( x  =  u  ->  { x }  =  { u } )
3029, 9xpeq12d 4636 . . 3  |-  ( x  =  u  ->  ( { x }  X.  B )  =  ( { u }  X.  [_ u  /  x ]_ B ) )
3126, 28, 30cbviun 3910 . 2  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  U_ u  e.  A  ( {
u }  X.  [_ u  /  x ]_ B
)
3225, 31sseqtrri 3182 1  |-  dom  F  C_ 
U_ x  e.  A  ( { x }  X.  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1348   [_csb 3049    C_ wss 3121   {csn 3583   <.cop 3586   U_ciun 3873    |-> cmpt 4050    X. cxp 4609   dom cdm 4611   ` cfv 5198    e. cmpo 5855   1stc1st 6117   2ndc2nd 6118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fv 5206  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120
This theorem is referenced by:  mpoexxg  6189  mpoxopn0yelv  6218
  Copyright terms: Public domain W3C validator