Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmmpossx | Unicode version |
Description: The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
fmpox.1 |
Ref | Expression |
---|---|
dmmpossx |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2312 | . . . . 5 | |
2 | nfcsb1v 3082 | . . . . 5 | |
3 | nfcv 2312 | . . . . 5 | |
4 | nfcv 2312 | . . . . 5 | |
5 | nfcsb1v 3082 | . . . . 5 | |
6 | nfcv 2312 | . . . . . 6 | |
7 | nfcsb1v 3082 | . . . . . 6 | |
8 | 6, 7 | nfcsb 3086 | . . . . 5 |
9 | csbeq1a 3058 | . . . . 5 | |
10 | csbeq1a 3058 | . . . . . 6 | |
11 | csbeq1a 3058 | . . . . . 6 | |
12 | 10, 11 | sylan9eqr 2225 | . . . . 5 |
13 | 1, 2, 3, 4, 5, 8, 9, 12 | cbvmpox 5931 | . . . 4 |
14 | fmpox.1 | . . . 4 | |
15 | vex 2733 | . . . . . . . 8 | |
16 | vex 2733 | . . . . . . . 8 | |
17 | 15, 16 | op1std 6127 | . . . . . . 7 |
18 | 17 | csbeq1d 3056 | . . . . . 6 |
19 | 15, 16 | op2ndd 6128 | . . . . . . . 8 |
20 | 19 | csbeq1d 3056 | . . . . . . 7 |
21 | 20 | csbeq2dv 3075 | . . . . . 6 |
22 | 18, 21 | eqtrd 2203 | . . . . 5 |
23 | 22 | mpomptx 5944 | . . . 4 |
24 | 13, 14, 23 | 3eqtr4i 2201 | . . 3 |
25 | 24 | dmmptss 5107 | . 2 |
26 | nfcv 2312 | . . 3 | |
27 | nfcv 2312 | . . . 4 | |
28 | 27, 2 | nfxp 4638 | . . 3 |
29 | sneq 3594 | . . . 4 | |
30 | 29, 9 | xpeq12d 4636 | . . 3 |
31 | 26, 28, 30 | cbviun 3910 | . 2 |
32 | 25, 31 | sseqtrri 3182 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 csb 3049 wss 3121 csn 3583 cop 3586 ciun 3873 cmpt 4050 cxp 4609 cdm 4611 cfv 5198 cmpo 5855 c1st 6117 c2nd 6118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fv 5206 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 |
This theorem is referenced by: mpoexxg 6189 mpoxopn0yelv 6218 |
Copyright terms: Public domain | W3C validator |