ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmpossx Unicode version

Theorem dmmpossx 6137
Description: The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypothesis
Ref Expression
fmpox.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
dmmpossx  |-  dom  F  C_ 
U_ x  e.  A  ( { x }  X.  B )
Distinct variable groups:    x, y, A   
y, B
Allowed substitution hints:    B( x)    C( x, y)    F( x, y)

Proof of Theorem dmmpossx
Dummy variables  u  t  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2296 . . . . 5  |-  F/_ u B
2 nfcsb1v 3060 . . . . 5  |-  F/_ x [_ u  /  x ]_ B
3 nfcv 2296 . . . . 5  |-  F/_ u C
4 nfcv 2296 . . . . 5  |-  F/_ v C
5 nfcsb1v 3060 . . . . 5  |-  F/_ x [_ u  /  x ]_ [_ v  /  y ]_ C
6 nfcv 2296 . . . . . 6  |-  F/_ y
u
7 nfcsb1v 3060 . . . . . 6  |-  F/_ y [_ v  /  y ]_ C
86, 7nfcsb 3064 . . . . 5  |-  F/_ y [_ u  /  x ]_ [_ v  /  y ]_ C
9 csbeq1a 3036 . . . . 5  |-  ( x  =  u  ->  B  =  [_ u  /  x ]_ B )
10 csbeq1a 3036 . . . . . 6  |-  ( y  =  v  ->  C  =  [_ v  /  y ]_ C )
11 csbeq1a 3036 . . . . . 6  |-  ( x  =  u  ->  [_ v  /  y ]_ C  =  [_ u  /  x ]_ [_ v  /  y ]_ C )
1210, 11sylan9eqr 2209 . . . . 5  |-  ( ( x  =  u  /\  y  =  v )  ->  C  =  [_ u  /  x ]_ [_ v  /  y ]_ C
)
131, 2, 3, 4, 5, 8, 9, 12cbvmpox 5889 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( u  e.  A ,  v  e. 
[_ u  /  x ]_ B  |->  [_ u  /  x ]_ [_ v  /  y ]_ C
)
14 fmpox.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
15 vex 2712 . . . . . . . 8  |-  u  e. 
_V
16 vex 2712 . . . . . . . 8  |-  v  e. 
_V
1715, 16op1std 6086 . . . . . . 7  |-  ( t  =  <. u ,  v
>.  ->  ( 1st `  t
)  =  u )
1817csbeq1d 3034 . . . . . 6  |-  ( t  =  <. u ,  v
>.  ->  [_ ( 1st `  t
)  /  x ]_ [_ ( 2nd `  t
)  /  y ]_ C  =  [_ u  /  x ]_ [_ ( 2nd `  t )  /  y ]_ C )
1915, 16op2ndd 6087 . . . . . . . 8  |-  ( t  =  <. u ,  v
>.  ->  ( 2nd `  t
)  =  v )
2019csbeq1d 3034 . . . . . . 7  |-  ( t  =  <. u ,  v
>.  ->  [_ ( 2nd `  t
)  /  y ]_ C  =  [_ v  / 
y ]_ C )
2120csbeq2dv 3053 . . . . . 6  |-  ( t  =  <. u ,  v
>.  ->  [_ u  /  x ]_ [_ ( 2nd `  t
)  /  y ]_ C  =  [_ u  /  x ]_ [_ v  / 
y ]_ C )
2218, 21eqtrd 2187 . . . . 5  |-  ( t  =  <. u ,  v
>.  ->  [_ ( 1st `  t
)  /  x ]_ [_ ( 2nd `  t
)  /  y ]_ C  =  [_ u  /  x ]_ [_ v  / 
y ]_ C )
2322mpomptx 5902 . . . 4  |-  ( t  e.  U_ u  e.  A  ( { u }  X.  [_ u  /  x ]_ B )  |->  [_ ( 1st `  t )  /  x ]_ [_ ( 2nd `  t )  / 
y ]_ C )  =  ( u  e.  A ,  v  e.  [_ u  /  x ]_ B  |->  [_ u  /  x ]_ [_ v  /  y ]_ C
)
2413, 14, 233eqtr4i 2185 . . 3  |-  F  =  ( t  e.  U_ u  e.  A  ( { u }  X.  [_ u  /  x ]_ B )  |->  [_ ( 1st `  t )  /  x ]_ [_ ( 2nd `  t )  /  y ]_ C )
2524dmmptss 5075 . 2  |-  dom  F  C_ 
U_ u  e.  A  ( { u }  X.  [_ u  /  x ]_ B )
26 nfcv 2296 . . 3  |-  F/_ u
( { x }  X.  B )
27 nfcv 2296 . . . 4  |-  F/_ x { u }
2827, 2nfxp 4606 . . 3  |-  F/_ x
( { u }  X.  [_ u  /  x ]_ B )
29 sneq 3567 . . . 4  |-  ( x  =  u  ->  { x }  =  { u } )
3029, 9xpeq12d 4604 . . 3  |-  ( x  =  u  ->  ( { x }  X.  B )  =  ( { u }  X.  [_ u  /  x ]_ B ) )
3126, 28, 30cbviun 3882 . 2  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  U_ u  e.  A  ( {
u }  X.  [_ u  /  x ]_ B
)
3225, 31sseqtrri 3159 1  |-  dom  F  C_ 
U_ x  e.  A  ( { x }  X.  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1332   [_csb 3027    C_ wss 3098   {csn 3556   <.cop 3559   U_ciun 3845    |-> cmpt 4021    X. cxp 4577   dom cdm 4579   ` cfv 5163    e. cmpo 5816   1stc1st 6076   2ndc2nd 6077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fv 5171  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079
This theorem is referenced by:  mpoexxg  6148  mpoxopn0yelv  6176
  Copyright terms: Public domain W3C validator