ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmpossx Unicode version

Theorem dmmpossx 6308
Description: The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypothesis
Ref Expression
fmpox.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
dmmpossx  |-  dom  F  C_ 
U_ x  e.  A  ( { x }  X.  B )
Distinct variable groups:    x, y, A   
y, B
Allowed substitution hints:    B( x)    C( x, y)    F( x, y)

Proof of Theorem dmmpossx
Dummy variables  u  t  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2350 . . . . 5  |-  F/_ u B
2 nfcsb1v 3134 . . . . 5  |-  F/_ x [_ u  /  x ]_ B
3 nfcv 2350 . . . . 5  |-  F/_ u C
4 nfcv 2350 . . . . 5  |-  F/_ v C
5 nfcsb1v 3134 . . . . 5  |-  F/_ x [_ u  /  x ]_ [_ v  /  y ]_ C
6 nfcv 2350 . . . . . 6  |-  F/_ y
u
7 nfcsb1v 3134 . . . . . 6  |-  F/_ y [_ v  /  y ]_ C
86, 7nfcsb 3139 . . . . 5  |-  F/_ y [_ u  /  x ]_ [_ v  /  y ]_ C
9 csbeq1a 3110 . . . . 5  |-  ( x  =  u  ->  B  =  [_ u  /  x ]_ B )
10 csbeq1a 3110 . . . . . 6  |-  ( y  =  v  ->  C  =  [_ v  /  y ]_ C )
11 csbeq1a 3110 . . . . . 6  |-  ( x  =  u  ->  [_ v  /  y ]_ C  =  [_ u  /  x ]_ [_ v  /  y ]_ C )
1210, 11sylan9eqr 2262 . . . . 5  |-  ( ( x  =  u  /\  y  =  v )  ->  C  =  [_ u  /  x ]_ [_ v  /  y ]_ C
)
131, 2, 3, 4, 5, 8, 9, 12cbvmpox 6046 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( u  e.  A ,  v  e. 
[_ u  /  x ]_ B  |->  [_ u  /  x ]_ [_ v  /  y ]_ C
)
14 fmpox.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
15 vex 2779 . . . . . . . 8  |-  u  e. 
_V
16 vex 2779 . . . . . . . 8  |-  v  e. 
_V
1715, 16op1std 6257 . . . . . . 7  |-  ( t  =  <. u ,  v
>.  ->  ( 1st `  t
)  =  u )
1817csbeq1d 3108 . . . . . 6  |-  ( t  =  <. u ,  v
>.  ->  [_ ( 1st `  t
)  /  x ]_ [_ ( 2nd `  t
)  /  y ]_ C  =  [_ u  /  x ]_ [_ ( 2nd `  t )  /  y ]_ C )
1915, 16op2ndd 6258 . . . . . . . 8  |-  ( t  =  <. u ,  v
>.  ->  ( 2nd `  t
)  =  v )
2019csbeq1d 3108 . . . . . . 7  |-  ( t  =  <. u ,  v
>.  ->  [_ ( 2nd `  t
)  /  y ]_ C  =  [_ v  / 
y ]_ C )
2120csbeq2dv 3127 . . . . . 6  |-  ( t  =  <. u ,  v
>.  ->  [_ u  /  x ]_ [_ ( 2nd `  t
)  /  y ]_ C  =  [_ u  /  x ]_ [_ v  / 
y ]_ C )
2218, 21eqtrd 2240 . . . . 5  |-  ( t  =  <. u ,  v
>.  ->  [_ ( 1st `  t
)  /  x ]_ [_ ( 2nd `  t
)  /  y ]_ C  =  [_ u  /  x ]_ [_ v  / 
y ]_ C )
2322mpomptx 6059 . . . 4  |-  ( t  e.  U_ u  e.  A  ( { u }  X.  [_ u  /  x ]_ B )  |->  [_ ( 1st `  t )  /  x ]_ [_ ( 2nd `  t )  / 
y ]_ C )  =  ( u  e.  A ,  v  e.  [_ u  /  x ]_ B  |->  [_ u  /  x ]_ [_ v  /  y ]_ C
)
2413, 14, 233eqtr4i 2238 . . 3  |-  F  =  ( t  e.  U_ u  e.  A  ( { u }  X.  [_ u  /  x ]_ B )  |->  [_ ( 1st `  t )  /  x ]_ [_ ( 2nd `  t )  /  y ]_ C )
2524dmmptss 5198 . 2  |-  dom  F  C_ 
U_ u  e.  A  ( { u }  X.  [_ u  /  x ]_ B )
26 nfcv 2350 . . 3  |-  F/_ u
( { x }  X.  B )
27 nfcv 2350 . . . 4  |-  F/_ x { u }
2827, 2nfxp 4720 . . 3  |-  F/_ x
( { u }  X.  [_ u  /  x ]_ B )
29 sneq 3654 . . . 4  |-  ( x  =  u  ->  { x }  =  { u } )
3029, 9xpeq12d 4718 . . 3  |-  ( x  =  u  ->  ( { x }  X.  B )  =  ( { u }  X.  [_ u  /  x ]_ B ) )
3126, 28, 30cbviun 3978 . 2  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  U_ u  e.  A  ( {
u }  X.  [_ u  /  x ]_ B
)
3225, 31sseqtrri 3236 1  |-  dom  F  C_ 
U_ x  e.  A  ( { x }  X.  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1373   [_csb 3101    C_ wss 3174   {csn 3643   <.cop 3646   U_ciun 3941    |-> cmpt 4121    X. cxp 4691   dom cdm 4693   ` cfv 5290    e. cmpo 5969   1stc1st 6247   2ndc2nd 6248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fv 5298  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250
This theorem is referenced by:  mpoexxg  6319  mpoxopn0yelv  6348
  Copyright terms: Public domain W3C validator