| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmmpossx | Unicode version | ||
| Description: The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.) |
| Ref | Expression |
|---|---|
| fmpox.1 |
|
| Ref | Expression |
|---|---|
| dmmpossx |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 |
. . . . 5
| |
| 2 | nfcsb1v 3157 |
. . . . 5
| |
| 3 | nfcv 2372 |
. . . . 5
| |
| 4 | nfcv 2372 |
. . . . 5
| |
| 5 | nfcsb1v 3157 |
. . . . 5
| |
| 6 | nfcv 2372 |
. . . . . 6
| |
| 7 | nfcsb1v 3157 |
. . . . . 6
| |
| 8 | 6, 7 | nfcsb 3162 |
. . . . 5
|
| 9 | csbeq1a 3133 |
. . . . 5
| |
| 10 | csbeq1a 3133 |
. . . . . 6
| |
| 11 | csbeq1a 3133 |
. . . . . 6
| |
| 12 | 10, 11 | sylan9eqr 2284 |
. . . . 5
|
| 13 | 1, 2, 3, 4, 5, 8, 9, 12 | cbvmpox 6082 |
. . . 4
|
| 14 | fmpox.1 |
. . . 4
| |
| 15 | vex 2802 |
. . . . . . . 8
| |
| 16 | vex 2802 |
. . . . . . . 8
| |
| 17 | 15, 16 | op1std 6294 |
. . . . . . 7
|
| 18 | 17 | csbeq1d 3131 |
. . . . . 6
|
| 19 | 15, 16 | op2ndd 6295 |
. . . . . . . 8
|
| 20 | 19 | csbeq1d 3131 |
. . . . . . 7
|
| 21 | 20 | csbeq2dv 3150 |
. . . . . 6
|
| 22 | 18, 21 | eqtrd 2262 |
. . . . 5
|
| 23 | 22 | mpomptx 6095 |
. . . 4
|
| 24 | 13, 14, 23 | 3eqtr4i 2260 |
. . 3
|
| 25 | 24 | dmmptss 5225 |
. 2
|
| 26 | nfcv 2372 |
. . 3
| |
| 27 | nfcv 2372 |
. . . 4
| |
| 28 | 27, 2 | nfxp 4746 |
. . 3
|
| 29 | sneq 3677 |
. . . 4
| |
| 30 | 29, 9 | xpeq12d 4744 |
. . 3
|
| 31 | 26, 28, 30 | cbviun 4002 |
. 2
|
| 32 | 25, 31 | sseqtrri 3259 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fv 5326 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 |
| This theorem is referenced by: mpoexxg 6356 mpoxopn0yelv 6385 |
| Copyright terms: Public domain | W3C validator |