ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmpossx Unicode version

Theorem dmmpossx 6200
Description: The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypothesis
Ref Expression
fmpox.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
dmmpossx  |-  dom  F  C_ 
U_ x  e.  A  ( { x }  X.  B )
Distinct variable groups:    x, y, A   
y, B
Allowed substitution hints:    B( x)    C( x, y)    F( x, y)

Proof of Theorem dmmpossx
Dummy variables  u  t  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2319 . . . . 5  |-  F/_ u B
2 nfcsb1v 3091 . . . . 5  |-  F/_ x [_ u  /  x ]_ B
3 nfcv 2319 . . . . 5  |-  F/_ u C
4 nfcv 2319 . . . . 5  |-  F/_ v C
5 nfcsb1v 3091 . . . . 5  |-  F/_ x [_ u  /  x ]_ [_ v  /  y ]_ C
6 nfcv 2319 . . . . . 6  |-  F/_ y
u
7 nfcsb1v 3091 . . . . . 6  |-  F/_ y [_ v  /  y ]_ C
86, 7nfcsb 3095 . . . . 5  |-  F/_ y [_ u  /  x ]_ [_ v  /  y ]_ C
9 csbeq1a 3067 . . . . 5  |-  ( x  =  u  ->  B  =  [_ u  /  x ]_ B )
10 csbeq1a 3067 . . . . . 6  |-  ( y  =  v  ->  C  =  [_ v  /  y ]_ C )
11 csbeq1a 3067 . . . . . 6  |-  ( x  =  u  ->  [_ v  /  y ]_ C  =  [_ u  /  x ]_ [_ v  /  y ]_ C )
1210, 11sylan9eqr 2232 . . . . 5  |-  ( ( x  =  u  /\  y  =  v )  ->  C  =  [_ u  /  x ]_ [_ v  /  y ]_ C
)
131, 2, 3, 4, 5, 8, 9, 12cbvmpox 5953 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( u  e.  A ,  v  e. 
[_ u  /  x ]_ B  |->  [_ u  /  x ]_ [_ v  /  y ]_ C
)
14 fmpox.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
15 vex 2741 . . . . . . . 8  |-  u  e. 
_V
16 vex 2741 . . . . . . . 8  |-  v  e. 
_V
1715, 16op1std 6149 . . . . . . 7  |-  ( t  =  <. u ,  v
>.  ->  ( 1st `  t
)  =  u )
1817csbeq1d 3065 . . . . . 6  |-  ( t  =  <. u ,  v
>.  ->  [_ ( 1st `  t
)  /  x ]_ [_ ( 2nd `  t
)  /  y ]_ C  =  [_ u  /  x ]_ [_ ( 2nd `  t )  /  y ]_ C )
1915, 16op2ndd 6150 . . . . . . . 8  |-  ( t  =  <. u ,  v
>.  ->  ( 2nd `  t
)  =  v )
2019csbeq1d 3065 . . . . . . 7  |-  ( t  =  <. u ,  v
>.  ->  [_ ( 2nd `  t
)  /  y ]_ C  =  [_ v  / 
y ]_ C )
2120csbeq2dv 3084 . . . . . 6  |-  ( t  =  <. u ,  v
>.  ->  [_ u  /  x ]_ [_ ( 2nd `  t
)  /  y ]_ C  =  [_ u  /  x ]_ [_ v  / 
y ]_ C )
2218, 21eqtrd 2210 . . . . 5  |-  ( t  =  <. u ,  v
>.  ->  [_ ( 1st `  t
)  /  x ]_ [_ ( 2nd `  t
)  /  y ]_ C  =  [_ u  /  x ]_ [_ v  / 
y ]_ C )
2322mpomptx 5966 . . . 4  |-  ( t  e.  U_ u  e.  A  ( { u }  X.  [_ u  /  x ]_ B )  |->  [_ ( 1st `  t )  /  x ]_ [_ ( 2nd `  t )  / 
y ]_ C )  =  ( u  e.  A ,  v  e.  [_ u  /  x ]_ B  |->  [_ u  /  x ]_ [_ v  /  y ]_ C
)
2413, 14, 233eqtr4i 2208 . . 3  |-  F  =  ( t  e.  U_ u  e.  A  ( { u }  X.  [_ u  /  x ]_ B )  |->  [_ ( 1st `  t )  /  x ]_ [_ ( 2nd `  t )  /  y ]_ C )
2524dmmptss 5126 . 2  |-  dom  F  C_ 
U_ u  e.  A  ( { u }  X.  [_ u  /  x ]_ B )
26 nfcv 2319 . . 3  |-  F/_ u
( { x }  X.  B )
27 nfcv 2319 . . . 4  |-  F/_ x { u }
2827, 2nfxp 4654 . . 3  |-  F/_ x
( { u }  X.  [_ u  /  x ]_ B )
29 sneq 3604 . . . 4  |-  ( x  =  u  ->  { x }  =  { u } )
3029, 9xpeq12d 4652 . . 3  |-  ( x  =  u  ->  ( { x }  X.  B )  =  ( { u }  X.  [_ u  /  x ]_ B ) )
3126, 28, 30cbviun 3924 . 2  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  U_ u  e.  A  ( {
u }  X.  [_ u  /  x ]_ B
)
3225, 31sseqtrri 3191 1  |-  dom  F  C_ 
U_ x  e.  A  ( { x }  X.  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1353   [_csb 3058    C_ wss 3130   {csn 3593   <.cop 3596   U_ciun 3887    |-> cmpt 4065    X. cxp 4625   dom cdm 4627   ` cfv 5217    e. cmpo 5877   1stc1st 6139   2ndc2nd 6140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fv 5225  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142
This theorem is referenced by:  mpoexxg  6211  mpoxopn0yelv  6240
  Copyright terms: Public domain W3C validator