Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmmpossx | Unicode version |
Description: The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
fmpox.1 |
Ref | Expression |
---|---|
dmmpossx |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . . . . 5 | |
2 | nfcsb1v 3078 | . . . . 5 | |
3 | nfcv 2308 | . . . . 5 | |
4 | nfcv 2308 | . . . . 5 | |
5 | nfcsb1v 3078 | . . . . 5 | |
6 | nfcv 2308 | . . . . . 6 | |
7 | nfcsb1v 3078 | . . . . . 6 | |
8 | 6, 7 | nfcsb 3082 | . . . . 5 |
9 | csbeq1a 3054 | . . . . 5 | |
10 | csbeq1a 3054 | . . . . . 6 | |
11 | csbeq1a 3054 | . . . . . 6 | |
12 | 10, 11 | sylan9eqr 2221 | . . . . 5 |
13 | 1, 2, 3, 4, 5, 8, 9, 12 | cbvmpox 5920 | . . . 4 |
14 | fmpox.1 | . . . 4 | |
15 | vex 2729 | . . . . . . . 8 | |
16 | vex 2729 | . . . . . . . 8 | |
17 | 15, 16 | op1std 6116 | . . . . . . 7 |
18 | 17 | csbeq1d 3052 | . . . . . 6 |
19 | 15, 16 | op2ndd 6117 | . . . . . . . 8 |
20 | 19 | csbeq1d 3052 | . . . . . . 7 |
21 | 20 | csbeq2dv 3071 | . . . . . 6 |
22 | 18, 21 | eqtrd 2198 | . . . . 5 |
23 | 22 | mpomptx 5933 | . . . 4 |
24 | 13, 14, 23 | 3eqtr4i 2196 | . . 3 |
25 | 24 | dmmptss 5100 | . 2 |
26 | nfcv 2308 | . . 3 | |
27 | nfcv 2308 | . . . 4 | |
28 | 27, 2 | nfxp 4631 | . . 3 |
29 | sneq 3587 | . . . 4 | |
30 | 29, 9 | xpeq12d 4629 | . . 3 |
31 | 26, 28, 30 | cbviun 3903 | . 2 |
32 | 25, 31 | sseqtrri 3177 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 csb 3045 wss 3116 csn 3576 cop 3579 ciun 3866 cmpt 4043 cxp 4602 cdm 4604 cfv 5188 cmpo 5844 c1st 6106 c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fv 5196 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: mpoexxg 6178 mpoxopn0yelv 6207 |
Copyright terms: Public domain | W3C validator |