Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmmpossx | Unicode version |
Description: The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
fmpox.1 |
Ref | Expression |
---|---|
dmmpossx |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2296 | . . . . 5 | |
2 | nfcsb1v 3060 | . . . . 5 | |
3 | nfcv 2296 | . . . . 5 | |
4 | nfcv 2296 | . . . . 5 | |
5 | nfcsb1v 3060 | . . . . 5 | |
6 | nfcv 2296 | . . . . . 6 | |
7 | nfcsb1v 3060 | . . . . . 6 | |
8 | 6, 7 | nfcsb 3064 | . . . . 5 |
9 | csbeq1a 3036 | . . . . 5 | |
10 | csbeq1a 3036 | . . . . . 6 | |
11 | csbeq1a 3036 | . . . . . 6 | |
12 | 10, 11 | sylan9eqr 2209 | . . . . 5 |
13 | 1, 2, 3, 4, 5, 8, 9, 12 | cbvmpox 5889 | . . . 4 |
14 | fmpox.1 | . . . 4 | |
15 | vex 2712 | . . . . . . . 8 | |
16 | vex 2712 | . . . . . . . 8 | |
17 | 15, 16 | op1std 6086 | . . . . . . 7 |
18 | 17 | csbeq1d 3034 | . . . . . 6 |
19 | 15, 16 | op2ndd 6087 | . . . . . . . 8 |
20 | 19 | csbeq1d 3034 | . . . . . . 7 |
21 | 20 | csbeq2dv 3053 | . . . . . 6 |
22 | 18, 21 | eqtrd 2187 | . . . . 5 |
23 | 22 | mpomptx 5902 | . . . 4 |
24 | 13, 14, 23 | 3eqtr4i 2185 | . . 3 |
25 | 24 | dmmptss 5075 | . 2 |
26 | nfcv 2296 | . . 3 | |
27 | nfcv 2296 | . . . 4 | |
28 | 27, 2 | nfxp 4606 | . . 3 |
29 | sneq 3567 | . . . 4 | |
30 | 29, 9 | xpeq12d 4604 | . . 3 |
31 | 26, 28, 30 | cbviun 3882 | . 2 |
32 | 25, 31 | sseqtrri 3159 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1332 csb 3027 wss 3098 csn 3556 cop 3559 ciun 3845 cmpt 4021 cxp 4577 cdm 4579 cfv 5163 cmpo 5816 c1st 6076 c2nd 6077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fv 5171 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 |
This theorem is referenced by: mpoexxg 6148 mpoxopn0yelv 6176 |
Copyright terms: Public domain | W3C validator |