ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funiunfvdmf Unicode version

Theorem funiunfvdmf 5808
Description: The indexed union of a function's values is the union of its image under the index class. This version of funiunfvdm 5807 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by Jim Kingdon, 10-Jan-2019.)
Hypothesis
Ref Expression
funiunfvf.1  |-  F/_ x F
Assertion
Ref Expression
funiunfvdmf  |-  ( F  Fn  A  ->  U_ x  e.  A  ( F `  x )  =  U. ( F " A ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem funiunfvdmf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 funiunfvf.1 . . . 4  |-  F/_ x F
2 nfcv 2336 . . . 4  |-  F/_ x
z
31, 2nffv 5565 . . 3  |-  F/_ x
( F `  z
)
4 nfcv 2336 . . 3  |-  F/_ z
( F `  x
)
5 fveq2 5555 . . 3  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
63, 4, 5cbviun 3950 . 2  |-  U_ z  e.  A  ( F `  z )  =  U_ x  e.  A  ( F `  x )
7 funiunfvdm 5807 . 2  |-  ( F  Fn  A  ->  U_ z  e.  A  ( F `  z )  =  U. ( F " A ) )
86, 7eqtr3id 2240 1  |-  ( F  Fn  A  ->  U_ x  e.  A  ( F `  x )  =  U. ( F " A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   F/_wnfc 2323   U.cuni 3836   U_ciun 3913   "cima 4663    Fn wfn 5250   ` cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator