ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funiunfvdmf Unicode version

Theorem funiunfvdmf 5765
Description: The indexed union of a function's values is the union of its image under the index class. This version of funiunfvdm 5764 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by Jim Kingdon, 10-Jan-2019.)
Hypothesis
Ref Expression
funiunfvf.1  |-  F/_ x F
Assertion
Ref Expression
funiunfvdmf  |-  ( F  Fn  A  ->  U_ x  e.  A  ( F `  x )  =  U. ( F " A ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem funiunfvdmf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 funiunfvf.1 . . . 4  |-  F/_ x F
2 nfcv 2319 . . . 4  |-  F/_ x
z
31, 2nffv 5526 . . 3  |-  F/_ x
( F `  z
)
4 nfcv 2319 . . 3  |-  F/_ z
( F `  x
)
5 fveq2 5516 . . 3  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
63, 4, 5cbviun 3924 . 2  |-  U_ z  e.  A  ( F `  z )  =  U_ x  e.  A  ( F `  x )
7 funiunfvdm 5764 . 2  |-  ( F  Fn  A  ->  U_ z  e.  A  ( F `  z )  =  U. ( F " A ) )
86, 7eqtr3id 2224 1  |-  ( F  Fn  A  ->  U_ x  e.  A  ( F `  x )  =  U. ( F " A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   F/_wnfc 2306   U.cuni 3810   U_ciun 3887   "cima 4630    Fn wfn 5212   ` cfv 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-fv 5225
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator